Are the ecosystem-level evaporative stress indices representative of evaporative stress of vegetation?

IF 5.6 1区 农林科学 Q1 AGRONOMY Agricultural and Forest Meteorology Pub Date : 2024-08-19 DOI:10.1016/j.agrformet.2024.110195
Pushpendra Raghav, Mukesh Kumar
{"title":"Are the ecosystem-level evaporative stress indices representative of evaporative stress of vegetation?","authors":"Pushpendra Raghav,&nbsp;Mukesh Kumar","doi":"10.1016/j.agrformet.2024.110195","DOIUrl":null,"url":null,"abstract":"<div><p>Evaporative Stress Index (ESI), also sometimes referred as Evaporative Stress Ratio (ESR), has been widely used as an indicator of vegetation evaporative stress, and is often used to track forest and agriculture droughts. Lower the stress, higher is the value of ESI or ESR. The goal of this study is to assess the suitability of these indices for tracking vegetation evaporative stress. As the dynamics of water loss from vegetation through transpiration (T) can be different than that of evapotranspiration (ET) from the ecosystem, it is hypothesized that ESI or ESR may not be sufficiently representative of the vegetation evaporative stress. Using eddy covariance flux tower data of 518 site years, distributed across 49-sites and 9 land covers globally, our findings reveal underestimation of vegetation evaporative stress by ESI during periods of high vapor pressure deficit (VPD) and overestimation during dry, low-VPD periods. The results highlight the need to improve representativeness of ESI for monitoring vegetation evaporative stress. Notably, this may entail accurate estimation of ecosystem T in systems lacking in-situ data, a challenge that warrants further attention.</p></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"357 ","pages":"Article 110195"},"PeriodicalIF":5.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324003083","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Evaporative Stress Index (ESI), also sometimes referred as Evaporative Stress Ratio (ESR), has been widely used as an indicator of vegetation evaporative stress, and is often used to track forest and agriculture droughts. Lower the stress, higher is the value of ESI or ESR. The goal of this study is to assess the suitability of these indices for tracking vegetation evaporative stress. As the dynamics of water loss from vegetation through transpiration (T) can be different than that of evapotranspiration (ET) from the ecosystem, it is hypothesized that ESI or ESR may not be sufficiently representative of the vegetation evaporative stress. Using eddy covariance flux tower data of 518 site years, distributed across 49-sites and 9 land covers globally, our findings reveal underestimation of vegetation evaporative stress by ESI during periods of high vapor pressure deficit (VPD) and overestimation during dry, low-VPD periods. The results highlight the need to improve representativeness of ESI for monitoring vegetation evaporative stress. Notably, this may entail accurate estimation of ecosystem T in systems lacking in-situ data, a challenge that warrants further attention.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
生态系统层面的蒸发压力指数是否能代表植被的蒸发压力?
蒸发胁迫指数(ESI),有时也称为蒸发胁迫比(ESR),已被广泛用作植被蒸发胁迫的指标,通常用于跟踪森林和农业干旱情况。压力越低,ESI 或 ESR 值越高。本研究的目的是评估这些指数是否适合用于跟踪植被蒸发压力。由于植被通过蒸腾作用(T)失水的动态可能不同于生态系统的蒸散作用(ET),因此假设 ESI 或 ESR 可能不足以代表植被蒸发压力。利用分布于全球 49 个站点和 9 种土地覆盖物的 518 个站点年的涡度协方差通量塔数据,我们的研究结果表明,在高蒸气压赤字(VPD)时期,ESI 低估了植被蒸发压力,而在干旱、低蒸气压赤字时期,ESI 则高估了植被蒸发压力。这些结果突出表明,有必要提高ESI在监测植被蒸发胁迫方面的代表性。值得注意的是,这可能需要在缺乏原位数据的系统中准确估算生态系统T,这是一个值得进一步关注的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.30
自引率
9.70%
发文量
415
审稿时长
69 days
期刊介绍: Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published. Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.
期刊最新文献
Forest fertilization transiently increases soil CO2 efflux in young Norway spruce stands in Sweden High-frequency attenuation in eddy covariance measurements from the LI-7200 IRGA with various heating and filter configurations – a spectral correction approach The joint assimilation of satellite observed LAI and soil moisture for the global root zone soil moisture production and its impact on land surface and ecosystem variables Editorial Board Drought dimensions impact birch resistance and resilience and their determining factors across semiarid forests of northern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1