Jie Kang , Haihua Shen , Yizhen Liu , Pengzhen Ma , Bo Wu , Longchao Xu , Jingyun Fang
{"title":"Drought dimensions impact birch resistance and resilience and their determining factors across semiarid forests of northern China","authors":"Jie Kang , Haihua Shen , Yizhen Liu , Pengzhen Ma , Bo Wu , Longchao Xu , Jingyun Fang","doi":"10.1016/j.agrformet.2024.110314","DOIUrl":null,"url":null,"abstract":"<div><div>Tree growth in forests is affected independently or jointly by drought dimensions, namely severity, timing, and duration, making the accurate modeling predictions a formidable challenge, and it still remains uncertain how trees respond to multiple dimensions of drought. Here, we quantified the dynamic response of tree growth (evaluated by resistance and resilience) to different dimensions of droughts, and their determined factors, using tree-ring data of 320 trees in 15 birch (<em>Betula platyphylla</em>) forests from semiarid regions across northern China, in conjunction with environmental and biological data. Our results showed that trees had the highest resistance and resilience to extreme droughts occurring in wet seasons, and had the lowest resistance and resilience to extreme droughts occurring in both dry and wet seasons (DS+WS). Surprisingly, we found a novel result that the negative effects of continuous droughts were not always more impactful than those of single droughts. Trees had similar resistance to different durations of DS+WS droughts, and showed no difference in tree resilience between single and continuous droughts when drought severity increased. Tree resistance and resilience to each dimension of droughts showed robust relationships with climatic and soil factors, but were driven by different biological traits. Tall trees with drought-sensitive leaves were the most vulnerable to droughts in dry seasons, but older trees were less resistant to droughts in wet seasons. This study highlights that multiple drought dimensions are crucial factors determining drought impacts on tree resistance and resilience, which may have a wide range of implications for predictions and uncertainty assessments of tree growth and forest management in semiarid regions.</div></div>","PeriodicalId":50839,"journal":{"name":"Agricultural and Forest Meteorology","volume":"360 ","pages":"Article 110314"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural and Forest Meteorology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168192324004271","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Tree growth in forests is affected independently or jointly by drought dimensions, namely severity, timing, and duration, making the accurate modeling predictions a formidable challenge, and it still remains uncertain how trees respond to multiple dimensions of drought. Here, we quantified the dynamic response of tree growth (evaluated by resistance and resilience) to different dimensions of droughts, and their determined factors, using tree-ring data of 320 trees in 15 birch (Betula platyphylla) forests from semiarid regions across northern China, in conjunction with environmental and biological data. Our results showed that trees had the highest resistance and resilience to extreme droughts occurring in wet seasons, and had the lowest resistance and resilience to extreme droughts occurring in both dry and wet seasons (DS+WS). Surprisingly, we found a novel result that the negative effects of continuous droughts were not always more impactful than those of single droughts. Trees had similar resistance to different durations of DS+WS droughts, and showed no difference in tree resilience between single and continuous droughts when drought severity increased. Tree resistance and resilience to each dimension of droughts showed robust relationships with climatic and soil factors, but were driven by different biological traits. Tall trees with drought-sensitive leaves were the most vulnerable to droughts in dry seasons, but older trees were less resistant to droughts in wet seasons. This study highlights that multiple drought dimensions are crucial factors determining drought impacts on tree resistance and resilience, which may have a wide range of implications for predictions and uncertainty assessments of tree growth and forest management in semiarid regions.
期刊介绍:
Agricultural and Forest Meteorology is an international journal for the publication of original articles and reviews on the inter-relationship between meteorology, agriculture, forestry, and natural ecosystems. Emphasis is on basic and applied scientific research relevant to practical problems in the field of plant and soil sciences, ecology and biogeochemistry as affected by weather as well as climate variability and change. Theoretical models should be tested against experimental data. Articles must appeal to an international audience. Special issues devoted to single topics are also published.
Typical topics include canopy micrometeorology (e.g. canopy radiation transfer, turbulence near the ground, evapotranspiration, energy balance, fluxes of trace gases), micrometeorological instrumentation (e.g., sensors for trace gases, flux measurement instruments, radiation measurement techniques), aerobiology (e.g. the dispersion of pollen, spores, insects and pesticides), biometeorology (e.g. the effect of weather and climate on plant distribution, crop yield, water-use efficiency, and plant phenology), forest-fire/weather interactions, and feedbacks from vegetation to weather and the climate system.