Tarek Slatni, Imen Ben Slimene, Zina Harzalli, Wael Taamalli, Abderrazak Smaoui, Chedly Abdelly, Salem Elkahoui
{"title":"Enhancing quinoa (Chenopodium quinoa) growth in saline environments through salt-tolerant rhizobacteria from halophyte biotope.","authors":"Tarek Slatni, Imen Ben Slimene, Zina Harzalli, Wael Taamalli, Abderrazak Smaoui, Chedly Abdelly, Salem Elkahoui","doi":"10.1111/ppl.14466","DOIUrl":null,"url":null,"abstract":"<p><p>The use of plant growth-promoting rhizobacteria (PGPR) in agriculture is one of the most promising approaches to improve plants' growth under salt stress and to support sustainable agriculture under climate change. In this context, our goal was to grow and enhance quinoa growth using native rhizobacteria that can withstand salt stress. To achieve this objective, we isolated rhizobacteria from three saline localities in a semi-arid region in Tunisia, which are characterized by different halophyte species and tested their plant growth-promoting (PGP) activities. Then, we inoculated quinoa seedlings cultivated on 300 mM NaCl with the three most efficient rhizobacteria. A positive effect of the three-salt tolerant rhizobacteria on the growth of quinoa under salinity was observed. In fact, the results of principal component analysis indicated that the inoculation of quinoa by salt-tolerant PGPR under high salinity had a prominent beneficial effect on various growth and physiological parameters of stressed plant, such as the biomass production, the roots length, the secondary roots number, proline content and photosynthesis activities. Three rhizobacteria were utilized in this investigation, and the molecular identification revealed that strain 1 is related to the Bacillus inaquosorum species, strain 2 to Bacillus thuringiensis species and strain 3 to Bacillus proteolyticus species. We can conclude that the saline soil, especially the halophytic rhizosphere, is a potential source of salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR), which stimulate the growth of quinoa and improve its tolerance to salinity.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14466","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The use of plant growth-promoting rhizobacteria (PGPR) in agriculture is one of the most promising approaches to improve plants' growth under salt stress and to support sustainable agriculture under climate change. In this context, our goal was to grow and enhance quinoa growth using native rhizobacteria that can withstand salt stress. To achieve this objective, we isolated rhizobacteria from three saline localities in a semi-arid region in Tunisia, which are characterized by different halophyte species and tested their plant growth-promoting (PGP) activities. Then, we inoculated quinoa seedlings cultivated on 300 mM NaCl with the three most efficient rhizobacteria. A positive effect of the three-salt tolerant rhizobacteria on the growth of quinoa under salinity was observed. In fact, the results of principal component analysis indicated that the inoculation of quinoa by salt-tolerant PGPR under high salinity had a prominent beneficial effect on various growth and physiological parameters of stressed plant, such as the biomass production, the roots length, the secondary roots number, proline content and photosynthesis activities. Three rhizobacteria were utilized in this investigation, and the molecular identification revealed that strain 1 is related to the Bacillus inaquosorum species, strain 2 to Bacillus thuringiensis species and strain 3 to Bacillus proteolyticus species. We can conclude that the saline soil, especially the halophytic rhizosphere, is a potential source of salt-tolerant plant growth-promoting rhizobacteria (ST-PGPR), which stimulate the growth of quinoa and improve its tolerance to salinity.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.