Christopher Hecht , Ali Pournaghi , Felix Schwinger , Kai Gerd Spreuer , Jan Figgener , Matthias Jarke , Dirk Uwe Sauer
{"title":"Global electric vehicle charging station site evaluation and placement based on large-scale empirical data from Germany","authors":"Christopher Hecht , Ali Pournaghi , Felix Schwinger , Kai Gerd Spreuer , Jan Figgener , Matthias Jarke , Dirk Uwe Sauer","doi":"10.1016/j.etran.2024.100358","DOIUrl":null,"url":null,"abstract":"<div><p>Electromobility is a key technology to decarbonize transportation and thereby avoid the worst impacts of anthropogenic climate change. To power such vehicles when away from their home or depot, public charging infrastructure is required which can be split into enroute and destination charging. We define the latter as charging events that occur while users are busy with other activities. To fulfill this purpose, chargers need to be placed in locations where people spend time. This paper introduces a novel approach to do so based on a neural network trained on several thousand public charging stations in Germany. Within the training sample, the approach is able to predict how much energy was charged per station and day with an <span><math><msup><mrow><mtext>R</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span> of 0.61 for the training set and a RMSE of 13 kWh/day. Using the network, we predict utilization across urban, suburban and industrial areas in Europe and make those predictions available through an easy-to-use web interface. It is further possible to perform predictions and, thereby, extrapolate the learnings from Germany to any country with sufficient OpenStreetMap data. The introduced holistic methodology with its prediction and visualization phase is a first-of-its-kind by applying large-scale measured charging data to the placement problem while being usable in areas which have not yet rolled out electromobility.</p></div>","PeriodicalId":36355,"journal":{"name":"Etransportation","volume":"22 ","pages":"Article 100358"},"PeriodicalIF":15.0000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590116824000481/pdfft?md5=4833f154d337850d227448a9aa216683&pid=1-s2.0-S2590116824000481-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Etransportation","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590116824000481","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electromobility is a key technology to decarbonize transportation and thereby avoid the worst impacts of anthropogenic climate change. To power such vehicles when away from their home or depot, public charging infrastructure is required which can be split into enroute and destination charging. We define the latter as charging events that occur while users are busy with other activities. To fulfill this purpose, chargers need to be placed in locations where people spend time. This paper introduces a novel approach to do so based on a neural network trained on several thousand public charging stations in Germany. Within the training sample, the approach is able to predict how much energy was charged per station and day with an of 0.61 for the training set and a RMSE of 13 kWh/day. Using the network, we predict utilization across urban, suburban and industrial areas in Europe and make those predictions available through an easy-to-use web interface. It is further possible to perform predictions and, thereby, extrapolate the learnings from Germany to any country with sufficient OpenStreetMap data. The introduced holistic methodology with its prediction and visualization phase is a first-of-its-kind by applying large-scale measured charging data to the placement problem while being usable in areas which have not yet rolled out electromobility.
期刊介绍:
eTransportation is a scholarly journal that aims to advance knowledge in the field of electric transportation. It focuses on all modes of transportation that utilize electricity as their primary source of energy, including electric vehicles, trains, ships, and aircraft. The journal covers all stages of research, development, and testing of new technologies, systems, and devices related to electrical transportation.
The journal welcomes the use of simulation and analysis tools at the system, transport, or device level. Its primary emphasis is on the study of the electrical and electronic aspects of transportation systems. However, it also considers research on mechanical parts or subsystems of vehicles if there is a clear interaction with electrical or electronic equipment.
Please note that this journal excludes other aspects such as sociological, political, regulatory, or environmental factors from its scope.