Would reducing chlorophyll content result in a higher photosynthesis nitrogen use efficiency in crops?

IF 4 2区 农林科学 Q2 FOOD SCIENCE & TECHNOLOGY Food and Energy Security Pub Date : 2024-08-20 DOI:10.1002/fes3.576
Linxiong Mao, Qingfeng Song, Xiaoya Li, Huiqiong Zheng, Xin-Guang Zhu
{"title":"Would reducing chlorophyll content result in a higher photosynthesis nitrogen use efficiency in crops?","authors":"Linxiong Mao,&nbsp;Qingfeng Song,&nbsp;Xiaoya Li,&nbsp;Huiqiong Zheng,&nbsp;Xin-Guang Zhu","doi":"10.1002/fes3.576","DOIUrl":null,"url":null,"abstract":"<p>Decreasing antenna size is considered a potential option for improving photosynthesis and increasing yield potential. Reducing chlorophyll content has been employed as a strategy to decrease antenna size. One of the commonly mentioned advantages of this approach is its ability to enhance crop nitrogen use efficiency (NUE); however, there is limited field evidence supporting this claim. In this study, we utilized a rice mutant called <i>p35s-Ami-YGL1</i>, which exhibits lower chlorophyll content and smaller antenna size, to investigate the effects of modifying leaf chlorophyll content on tissue nitrogen content and NUE. Our results demonstrate that the nitrogen contents in various tissues, including seed tissue, increased on a weight basis in <i>p35s-Ami-YGL1</i> mutants while exhibiting a decrease in C:N ratio. Simultaneously, we observed a reduction in tissue carbon content along with an increase in the levels of chlorophyll precursors such as Proto IX. Specifically, we observed an upregulation in the expression of genes associated with photosynthetic light reactions and chlorophyll metabolism, while there was no increase in the expression of genes involved in the CBB cycle and nitrogen metabolism. In addition, <i>p35s-Ami-YGL1</i> experienced increased photodamage. These findings suggest that the alterations in the C:N ratio and nitrogen content in plants may be attributed to Proto IX-mediated photodamage and chloroplast reverse transduction signaling. Besides, these results suggest that the observed increase in tissue nitrogen content in <i>p35s-Ami-YGL1</i> does not reflect an increase in plant nitrogen absorption or use efficiency, rather it is a result of stunted carbon fixation capacity.</p>","PeriodicalId":54283,"journal":{"name":"Food and Energy Security","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/fes3.576","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Energy Security","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/fes3.576","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Decreasing antenna size is considered a potential option for improving photosynthesis and increasing yield potential. Reducing chlorophyll content has been employed as a strategy to decrease antenna size. One of the commonly mentioned advantages of this approach is its ability to enhance crop nitrogen use efficiency (NUE); however, there is limited field evidence supporting this claim. In this study, we utilized a rice mutant called p35s-Ami-YGL1, which exhibits lower chlorophyll content and smaller antenna size, to investigate the effects of modifying leaf chlorophyll content on tissue nitrogen content and NUE. Our results demonstrate that the nitrogen contents in various tissues, including seed tissue, increased on a weight basis in p35s-Ami-YGL1 mutants while exhibiting a decrease in C:N ratio. Simultaneously, we observed a reduction in tissue carbon content along with an increase in the levels of chlorophyll precursors such as Proto IX. Specifically, we observed an upregulation in the expression of genes associated with photosynthetic light reactions and chlorophyll metabolism, while there was no increase in the expression of genes involved in the CBB cycle and nitrogen metabolism. In addition, p35s-Ami-YGL1 experienced increased photodamage. These findings suggest that the alterations in the C:N ratio and nitrogen content in plants may be attributed to Proto IX-mediated photodamage and chloroplast reverse transduction signaling. Besides, these results suggest that the observed increase in tissue nitrogen content in p35s-Ami-YGL1 does not reflect an increase in plant nitrogen absorption or use efficiency, rather it is a result of stunted carbon fixation capacity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
降低叶绿素含量是否会提高作物的光合作用氮利用效率?
缩小触角尺寸被认为是改善光合作用和提高产量潜力的一个潜在选择。降低叶绿素含量已被用作缩小触角的一种策略。通常提到的这种方法的优点之一是能够提高作物的氮利用效率(NUE);然而,支持这种说法的实地证据却很有限。在本研究中,我们利用叶绿素含量较低、触角较小的水稻突变体 p35s-Ami-YGL1,研究了改变叶片叶绿素含量对组织氮含量和氮利用效率的影响。我们的研究结果表明,p35s-Ami-YGL1 突变体中各种组织(包括种子组织)的氮含量在重量基础上都有所增加,同时表现出 C:N 比值的下降。同时,我们还观察到组织碳含量的减少以及叶绿素前体(如 Proto IX)含量的增加。具体来说,我们观察到与光合光反应和叶绿素代谢相关的基因表达上调,而与 CBB 循环和氮代谢相关的基因表达没有增加。此外,p35s-Ami-YGL1 的光损伤也有所增加。这些发现表明,植物中 C:N 比率和氮含量的改变可能是由于 Proto IX 介导的光损伤和叶绿体反向传导信号所致。此外,这些结果表明,在 p35s-Ami-YGL1 中观察到的组织氮含量增加并不反映植物氮吸收或利用效率的提高,而是碳固定能力受阻的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Food and Energy Security
Food and Energy Security Energy-Renewable Energy, Sustainability and the Environment
CiteScore
9.30
自引率
4.00%
发文量
76
审稿时长
19 weeks
期刊介绍: Food and Energy Security seeks to publish high quality and high impact original research on agricultural crop and forest productivity to improve food and energy security. It actively seeks submissions from emerging countries with expanding agricultural research communities. Papers from China, other parts of Asia, India and South America are particularly welcome. The Editorial Board, headed by Editor-in-Chief Professor Martin Parry, is determined to make FES the leading publication in its sector and will be aiming for a top-ranking impact factor. Primary research articles should report hypothesis driven investigations that provide new insights into mechanisms and processes that determine productivity and properties for exploitation. Review articles are welcome but they must be critical in approach and provide particularly novel and far reaching insights. Food and Energy Security offers authors a forum for the discussion of the most important advances in this field and promotes an integrative approach of scientific disciplines. Papers must contribute substantially to the advancement of knowledge. Examples of areas covered in Food and Energy Security include: • Agronomy • Biotechnological Approaches • Breeding & Genetics • Climate Change • Quality and Composition • Food Crops and Bioenergy Feedstocks • Developmental, Physiology and Biochemistry • Functional Genomics • Molecular Biology • Pest and Disease Management • Post Harvest Biology • Soil Science • Systems Biology
期刊最新文献
Exploring Drought Responses in Mexican Soybeans: Plant Water Status, Shoot and Root Biomass, and Root System Architecture Issue Information A Functional Analysis of Inflorescence Architecture in Musa L. (Musaceae) Crop Residue Biochar Rather Than Manure and Straw Return Provided Short Term Synergism Among Grain Production, Carbon Sequestration, and Greenhouse Gas Emission Reduction in a Paddy Under Rice-Wheat Rotation Sustainable Maize Storage Technology Adoption in Ghana: Implications for Postharvest Losses, Farm Income, and Income Inequality
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1