Microstructurally resolved electrochemical evolution of mechanical- and irradiation-induced damage in nuclear alloys

IF 6.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY npj Materials Degradation Pub Date : 2024-08-19 DOI:10.1038/s41529-024-00500-7
Xin Chen, Marta Pozuelo, Maxim Gussev, Matthew Chancey, Yongqiang Wang, Magdalena Balonis, Mathieu Bauchy, Gaurav Sant
{"title":"Microstructurally resolved electrochemical evolution of mechanical- and irradiation-induced damage in nuclear alloys","authors":"Xin Chen, Marta Pozuelo, Maxim Gussev, Matthew Chancey, Yongqiang Wang, Magdalena Balonis, Mathieu Bauchy, Gaurav Sant","doi":"10.1038/s41529-024-00500-7","DOIUrl":null,"url":null,"abstract":"There is a need for high-throughput, scale-relevant, and direct electrochemical analysis to understand the corrosion behavior and sensitivity of nuclear materials that are exposed to extreme (high pressure, temperature, and radiation exposure) environments. We demonstrate the multi-scale, multi-modal application of scanning electrochemical cell microscopy (SECCM) to electrochemically profile corrosion alterations in nuclear alloys in a microstructurally resolved manner. Particularly, we identify that both mechanically deformed and irradiated microstructures show reduced charge-transfer resistance that leads to accelerated oxidation. We highlight that the effects of mechanical deformation and irradiation are synergistic, and may in fact, superimpose each other, with implications including general-, galvanic-, and/or irradiation-activated stress-corrosion cracking. Taken together, we highlight the ability of non-destructive, electrochemical interrogations to ascertain how microstructural alterations result in changes in the corrosion tendency of a nuclear alloy: knowledge which has implications to rank, qualify and examine alloys for use in nuclear construction applications.","PeriodicalId":19270,"journal":{"name":"npj Materials Degradation","volume":" ","pages":"1-8"},"PeriodicalIF":6.6000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41529-024-00500-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Materials Degradation","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41529-024-00500-7","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

There is a need for high-throughput, scale-relevant, and direct electrochemical analysis to understand the corrosion behavior and sensitivity of nuclear materials that are exposed to extreme (high pressure, temperature, and radiation exposure) environments. We demonstrate the multi-scale, multi-modal application of scanning electrochemical cell microscopy (SECCM) to electrochemically profile corrosion alterations in nuclear alloys in a microstructurally resolved manner. Particularly, we identify that both mechanically deformed and irradiated microstructures show reduced charge-transfer resistance that leads to accelerated oxidation. We highlight that the effects of mechanical deformation and irradiation are synergistic, and may in fact, superimpose each other, with implications including general-, galvanic-, and/or irradiation-activated stress-corrosion cracking. Taken together, we highlight the ability of non-destructive, electrochemical interrogations to ascertain how microstructural alterations result in changes in the corrosion tendency of a nuclear alloy: knowledge which has implications to rank, qualify and examine alloys for use in nuclear construction applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
核合金中机械和辐照诱发损伤的微结构解析电化学演化
需要进行高通量、规模相关和直接的电化学分析,以了解暴露在极端(高压、高温和辐照)环境中的核材料的腐蚀行为和敏感性。我们展示了扫描电化学电池显微镜 (SECCM) 的多尺度、多模式应用,以微观结构解析的方式对核合金的腐蚀变化进行电化学剖析。特别是,我们发现机械变形和辐照微结构都会降低电荷转移电阻,从而导致加速氧化。我们强调,机械变形和辐照的影响是协同的,实际上可能相互叠加,其影响包括一般、电化学和/或辐照激活的应力腐蚀开裂。综上所述,我们强调了非破坏性电化学检查的能力,以确定微观结构的改变如何导致核合金腐蚀倾向的变化:这些知识对核设施应用中合金的等级、资格和检查都有影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Materials Degradation
npj Materials Degradation MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.80
自引率
7.80%
发文量
86
审稿时长
6 weeks
期刊介绍: npj Materials Degradation considers basic and applied research that explores all aspects of the degradation of metallic and non-metallic materials. The journal broadly defines ‘materials degradation’ as a reduction in the ability of a material to perform its task in-service as a result of environmental exposure. The journal covers a broad range of topics including but not limited to: -Degradation of metals, glasses, minerals, polymers, ceramics, cements and composites in natural and engineered environments, as a result of various stimuli -Computational and experimental studies of degradation mechanisms and kinetics -Characterization of degradation by traditional and emerging techniques -New approaches and technologies for enhancing resistance to degradation -Inspection and monitoring techniques for materials in-service, such as sensing technologies
期刊最新文献
Systematic quantification of hydrogen in pipeline steel by atom probe tomography after ambient charging and transfer Corrosion evaluation of Al-Cu-Mn-Zr cast alloys in 3.5% NaCl solution Fracture analysis under modes I and II of adhesive joints on CFRP in saline environment Microscale chemical imaging to characterize and quantify corrosion processes at the metal-electrolyte interface Microstructure engineering for corrosion resistance in structural alloy design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1