Lorenzo Arcioni, Manuel Arcieri, Jessica Di Martino, Franco Liberati, Paolo Bottoni, Tiziana Castrignanò
{"title":"HPC-T-Annotator: an HPC tool for de novo transcriptome assembly annotation.","authors":"Lorenzo Arcioni, Manuel Arcieri, Jessica Di Martino, Franco Liberati, Paolo Bottoni, Tiziana Castrignanò","doi":"10.1186/s12859-024-05887-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The availability of transcriptomic data for species without a reference genome enables the construction of de novo transcriptome assemblies as alternative reference resources from RNA-Seq data. A transcriptome provides direct information about a species' protein-coding genes under specific experimental conditions. The de novo assembly process produces a unigenes file in FASTA format, subsequently targeted for the annotation. Homology-based annotation, a method to infer the function of sequences by estimating similarity with other sequences in a reference database, is a computationally demanding procedure.</p><p><strong>Results: </strong>To mitigate the computational burden, we introduce HPC-T-Annotator, a tool for de novo transcriptome homology annotation on high performance computing (HPC) infrastructures, designed for straightforward configuration via a Web interface. Once the configuration data are given, the entire parallel computing software for annotation is automatically generated and can be launched on a supercomputer using a simple command line. The output data can then be easily viewed using post-processing utilities in the form of Python notebooks integrated in the proposed software.</p><p><strong>Conclusions: </strong>HPC-T-Annotator expedites homology-based annotation in de novo transcriptome assemblies. Its efficient parallelization strategy on HPC infrastructures significantly reduces computational load and execution times, enabling large-scale transcriptome analysis and comparison projects, while its intuitive graphical interface extends accessibility to users without IT skills.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11340092/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05887-3","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: The availability of transcriptomic data for species without a reference genome enables the construction of de novo transcriptome assemblies as alternative reference resources from RNA-Seq data. A transcriptome provides direct information about a species' protein-coding genes under specific experimental conditions. The de novo assembly process produces a unigenes file in FASTA format, subsequently targeted for the annotation. Homology-based annotation, a method to infer the function of sequences by estimating similarity with other sequences in a reference database, is a computationally demanding procedure.
Results: To mitigate the computational burden, we introduce HPC-T-Annotator, a tool for de novo transcriptome homology annotation on high performance computing (HPC) infrastructures, designed for straightforward configuration via a Web interface. Once the configuration data are given, the entire parallel computing software for annotation is automatically generated and can be launched on a supercomputer using a simple command line. The output data can then be easily viewed using post-processing utilities in the form of Python notebooks integrated in the proposed software.
Conclusions: HPC-T-Annotator expedites homology-based annotation in de novo transcriptome assemblies. Its efficient parallelization strategy on HPC infrastructures significantly reduces computational load and execution times, enabling large-scale transcriptome analysis and comparison projects, while its intuitive graphical interface extends accessibility to users without IT skills.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.