{"title":"Mining contextually meaningful subgraphs from a vertex-attributed graph.","authors":"Riyad Hakim, Saeed Salem","doi":"10.1186/s12859-024-05960-x","DOIUrl":null,"url":null,"abstract":"<p><p>Networks have emerged as a natural data structure to represent relations among entities. Proteins interact to carry out cellular functions and protein-Protein interaction network analysis has been employed for understanding the cellular machinery. Advances in genomics technologies enabled the collection of large data that annotate proteins in interaction networks. Integrative analysis of interaction networks with gene expression and annotations enables the discovery of context-specific complexes and improves the identification of functional modules and pathways. Extracting subnetworks whose vertices are connected and have high attribute similarity have applications in diverse domains. We present an enumeration approach for mining sets of connected and cohesive subgraphs, where vertices in the subgraphs have similar attribute profile. Due to the large number of cohesive connected subgraphs and to overcome the overlap among these subgraphs, we propose an algorithm for enumerating a set of representative subgraphs, the set of all closed subgraphs. We propose pruning strategies for efficiently enumerating the search tree without missing any pattern or reporting duplicate subgraphs. On a real protein-protein interaction network with attributes representing the dysregulation profile of genes in multiple cancers, we mine closed cohesive connected subnetworks and show their biological significance. Moreover, we conduct a runtime comparison with existing algorithms to show the efficiency of our proposed algorithm.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05960-x","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Networks have emerged as a natural data structure to represent relations among entities. Proteins interact to carry out cellular functions and protein-Protein interaction network analysis has been employed for understanding the cellular machinery. Advances in genomics technologies enabled the collection of large data that annotate proteins in interaction networks. Integrative analysis of interaction networks with gene expression and annotations enables the discovery of context-specific complexes and improves the identification of functional modules and pathways. Extracting subnetworks whose vertices are connected and have high attribute similarity have applications in diverse domains. We present an enumeration approach for mining sets of connected and cohesive subgraphs, where vertices in the subgraphs have similar attribute profile. Due to the large number of cohesive connected subgraphs and to overcome the overlap among these subgraphs, we propose an algorithm for enumerating a set of representative subgraphs, the set of all closed subgraphs. We propose pruning strategies for efficiently enumerating the search tree without missing any pattern or reporting duplicate subgraphs. On a real protein-protein interaction network with attributes representing the dysregulation profile of genes in multiple cancers, we mine closed cohesive connected subnetworks and show their biological significance. Moreover, we conduct a runtime comparison with existing algorithms to show the efficiency of our proposed algorithm.
期刊介绍:
BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology.
BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.