Khosro Soleimani-Chamkhorami , Abdolamir Karbalaie , Ahmad Kasraei , Ehsan Haghighi , Stephen M. Famurewa , A.H.S. Garmabaki
{"title":"Identifying climate-related failures in railway infrastructure using machine learning","authors":"Khosro Soleimani-Chamkhorami , Abdolamir Karbalaie , Ahmad Kasraei , Ehsan Haghighi , Stephen M. Famurewa , A.H.S. Garmabaki","doi":"10.1016/j.trd.2024.104371","DOIUrl":null,"url":null,"abstract":"<div><p>Climate change impacts pose challenges to a dependable operation of railway infrastructure assets, thus necessitating understanding and mitigating its effects. This study proposes a machine learning framework to distinguish between climatic and non-climatic failures in railway infrastructure. The maintenance data of turnout assets from Sweden’s railway were collected and integrated with asset design, geographical and meteorological parameters. Various machine learning algorithms were employed to classify failures across multiple time horizons. The Random Forest model demonstrated a high accuracy of 0.827 and stable F1-scores across all time horizons. The study identified minimum-temperature and quantity of snow and rain prior to the event as the most influential factors. The 24-hour time horizon prior to failure emerged as the most effective time window for the classification. The practical implications and applications include enhancement of maintenance and renewal process, supporting more effective resource allocation, and implementing climate adaptation measures towards resilience railway infrastructure management.</p></div>","PeriodicalId":23277,"journal":{"name":"Transportation Research Part D-transport and Environment","volume":"135 ","pages":"Article 104371"},"PeriodicalIF":7.7000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1361920924003286/pdfft?md5=08251a9e3c3240adbfa02475f67492d6&pid=1-s2.0-S1361920924003286-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Research Part D-transport and Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1361920924003286","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL STUDIES","Score":null,"Total":0}
引用次数: 0
Abstract
Climate change impacts pose challenges to a dependable operation of railway infrastructure assets, thus necessitating understanding and mitigating its effects. This study proposes a machine learning framework to distinguish between climatic and non-climatic failures in railway infrastructure. The maintenance data of turnout assets from Sweden’s railway were collected and integrated with asset design, geographical and meteorological parameters. Various machine learning algorithms were employed to classify failures across multiple time horizons. The Random Forest model demonstrated a high accuracy of 0.827 and stable F1-scores across all time horizons. The study identified minimum-temperature and quantity of snow and rain prior to the event as the most influential factors. The 24-hour time horizon prior to failure emerged as the most effective time window for the classification. The practical implications and applications include enhancement of maintenance and renewal process, supporting more effective resource allocation, and implementing climate adaptation measures towards resilience railway infrastructure management.
期刊介绍:
Transportation Research Part D: Transport and Environment focuses on original research exploring the environmental impacts of transportation, policy responses to these impacts, and their implications for transportation system design, planning, and management. The journal comprehensively covers the interaction between transportation and the environment, ranging from local effects on specific geographical areas to global implications such as natural resource depletion and atmospheric pollution.
We welcome research papers across all transportation modes, including maritime, air, and land transportation, assessing their environmental impacts broadly. Papers addressing both mobile aspects and transportation infrastructure are considered. The journal prioritizes empirical findings and policy responses of regulatory, planning, technical, or fiscal nature. Articles are policy-driven, accessible, and applicable to readers from diverse disciplines, emphasizing relevance and practicality. We encourage interdisciplinary submissions and welcome contributions from economically developing and advanced countries alike, reflecting our international orientation.