Advances in the labelling and selective manipulation of synapses

IF 28.7 1区 医学 Q1 NEUROSCIENCES Nature Reviews Neuroscience Pub Date : 2024-08-22 DOI:10.1038/s41583-024-00851-9
Binod Timalsina, Sangkyu Lee, Bong-Kiun Kaang
{"title":"Advances in the labelling and selective manipulation of synapses","authors":"Binod Timalsina, Sangkyu Lee, Bong-Kiun Kaang","doi":"10.1038/s41583-024-00851-9","DOIUrl":null,"url":null,"abstract":"Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy. An array of genetically encoded tools are now available to label and manipulate synapses in different experimental species. Kaang and colleagues provide an overview of these techniques, highlighting their advantages, disadvantages and utility for investigating synaptic function.","PeriodicalId":49142,"journal":{"name":"Nature Reviews Neuroscience","volume":"25 10","pages":"668-687"},"PeriodicalIF":28.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Reviews Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.nature.com/articles/s41583-024-00851-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Synapses are highly specialized neuronal structures that are essential for neurotransmission, and they are dynamically regulated throughout the lifetime. Although accumulating evidence indicates that these structures are crucial for information processing and storage in the brain, their precise roles beyond neurotransmission are yet to be fully appreciated. Genetically encoded fluorescent tools have deepened our understanding of synaptic structure and function, but developing an ideal methodology to selectively visualize, label and manipulate synapses remains challenging. Here, we provide an overview of currently available synapse labelling techniques and describe their extension to enable synapse manipulation. We categorize these approaches on the basis of their conceptual bases and target molecules, compare their advantages and limitations and propose potential modifications to improve their effectiveness. These methods have broad utility, particularly for investigating mechanisms of synaptic function and synaptopathy. An array of genetically encoded tools are now available to label and manipulate synapses in different experimental species. Kaang and colleagues provide an overview of these techniques, highlighting their advantages, disadvantages and utility for investigating synaptic function.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突触标记和选择性操作的进展。
突触是高度特化的神经元结构,对神经传递至关重要,而且在整个生命周期中都会受到动态调节。尽管越来越多的证据表明,这些结构对大脑的信息处理和存储至关重要,但它们在神经传递之外的确切作用仍有待充分认识。基因编码的荧光工具加深了我们对突触结构和功能的理解,但开发一种理想的方法来选择性地可视化、标记和操作突触仍具有挑战性。在此,我们概述了目前可用的突触标记技术,并介绍了这些技术在实现突触操作方面的扩展。我们根据概念基础和目标分子对这些方法进行了分类,比较了它们的优势和局限性,并提出了可能的改进措施,以提高它们的有效性。这些方法具有广泛的实用性,特别是在研究突触功能和突触病变的机制方面。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.60%
发文量
104
期刊介绍: Nature Reviews Neuroscience is a multidisciplinary journal that covers various fields within neuroscience, aiming to offer a comprehensive understanding of the structure and function of the central nervous system. Advances in molecular, developmental, and cognitive neuroscience, facilitated by powerful experimental techniques and theoretical approaches, have made enduring neurobiological questions more accessible. Nature Reviews Neuroscience serves as a reliable and accessible resource, addressing the breadth and depth of modern neuroscience. It acts as an authoritative and engaging reference for scientists interested in all aspects of neuroscience.
期刊最新文献
Opening the gate to regeneration Fly connectome over the wire Neurobiology of attention-deficit hyperactivity disorder: historical challenges and emerging frontiers Social and emotional learning in the cerebellum Synaptic sleep pressure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1