Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy.

IF 1.3 4区 医学 Q4 PHARMACOLOGY & PHARMACY Xenobiotica Pub Date : 2024-09-01 Epub Date: 2024-08-28 DOI:10.1080/00498254.2024.2395557
Boon Hooi Tan, Nafees Ahemad, Yan Pan, Chin Eng Ong
{"title":"Mechanism-based inactivation of cytochromes P450: implications in drug interactions and pharmacotherapy.","authors":"Boon Hooi Tan, Nafees Ahemad, Yan Pan, Chin Eng Ong","doi":"10.1080/00498254.2024.2395557","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.</p>","PeriodicalId":23812,"journal":{"name":"Xenobiotica","volume":" ","pages":"575-598"},"PeriodicalIF":1.3000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Xenobiotica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/00498254.2024.2395557","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/28 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochrome P40 (CYP) enzymes dominate the metabolism of numerous endogenous and xenobiotic substances. While it is commonly believed that CYP-catalysed reactions result in the detoxication of foreign substances, these reactions can also yield reactive intermediates that can bind to cellular macromolecules to cause cytotoxicity or irreversibly inactivate CYPs that create them.Mechanism-based inactivation (MBI) produces either irreversible or quasi-irreversible inactivation and is commonly caused by CYP metabolic bioactivation to an electrophilic reactive intermediate. Many drugs that have been known to cause MBI in CYPs have been discovered as perpetrators in drug-drug interactions throughout the last 20-30 years.This review will highlight the key findings from the recent literature about the mechanisms of CYP enzyme inhibition, with a focus on the broad mechanistic elements of MBI for widely used drugs linked to the phenomenon. There will also be a brief discussion of the clinical or pharmacokinetic consequences of CYP inactivation with regard to drug interaction and toxicity risk.Gaining knowledge about the selective inactivation of CYPs by common therapeutic drugs helps with the assessment of factors that affect the systemic clearance of co-administered drugs and improves comprehension of anticipated interactions with other drugs or xenobiotics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机理的细胞色素 P450 失活:药物相互作用和药物治疗的意义》。
细胞色素 P40(CYP)酶主导着多种内源性物质和异生物物质的代谢。虽然人们普遍认为 CYP 催化的反应会导致外来物质的解毒,但这些反应也会产生反应性中间产物,这些中间产物会与细胞大分子结合,从而引起细胞毒性,或使产生这些中间产物的 CYP 不可逆地失活。机制失活(MBI)会产生不可逆或准不可逆失活,通常是由 CYP 代谢生物活化为亲电反应性中间产物引起的。本综述将重点介绍近期文献中关于 CYP 酶抑制机制的主要发现,重点是与 MBI 现象相关的广泛使用药物的广泛机制要素。了解常见治疗药物对 CYP 的选择性灭活有助于评估影响合用药物全身清除率的因素,并提高对预期与其他药物或异生物体相互作用的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Xenobiotica
Xenobiotica 医学-毒理学
CiteScore
3.80
自引率
5.60%
发文量
96
审稿时长
2 months
期刊介绍: Xenobiotica covers seven main areas, including:General Xenobiochemistry, including in vitro studies concerned with the metabolism, disposition and excretion of drugs, and other xenobiotics, as well as the structure, function and regulation of associated enzymesClinical Pharmacokinetics and Metabolism, covering the pharmacokinetics and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in manAnimal Pharmacokinetics and Metabolism, covering the pharmacokinetics, and absorption, distribution, metabolism and excretion of drugs and other xenobiotics in animalsPharmacogenetics, defined as the identification and functional characterisation of polymorphic genes that encode xenobiotic metabolising enzymes and transporters that may result in altered enzymatic, cellular and clinical responses to xenobioticsMolecular Toxicology, concerning the mechanisms of toxicity and the study of toxicology of xenobiotics at the molecular levelXenobiotic Transporters, concerned with all aspects of the carrier proteins involved in the movement of xenobiotics into and out of cells, and their impact on pharmacokinetic behaviour in animals and manTopics in Xenobiochemistry, in the form of reviews and commentaries are primarily intended to be a critical analysis of the issue, wherein the author offers opinions on the relevance of data or of a particular experimental approach or methodology
期刊最新文献
Inorganic Mercury Pharmacokinetics in Man: A Hybrid Model. The impact of CYP3A5, NR1I2, and POR polymorphisms on tacrolimus dose-adjusted concentration and clinical outcomes in adult allogeneic hematopoietic stem cell transplantation. Effects of CYP3A5 polymorphism and renal impairment on the drug interaction between venetoclax and fluconazole in acute myeloid leukaemia patients. Noise - an insidious stressor affecting xenobiotic metabolism? Justification of widened dissolution specifications of an extended-release product using physiologically based biopharmaceutics modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1