Microstructural characterization of CO2-cured calcium silicate cement

IF 6.2 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY Developments in the Built Environment Pub Date : 2024-08-10 DOI:10.1016/j.dibe.2024.100518
Amanuel Bersisa , Ki-Yeon Moon , G.M. Kim , Jin-Sang Cho , Solmoi Park
{"title":"Microstructural characterization of CO2-cured calcium silicate cement","authors":"Amanuel Bersisa ,&nbsp;Ki-Yeon Moon ,&nbsp;G.M. Kim ,&nbsp;Jin-Sang Cho ,&nbsp;Solmoi Park","doi":"10.1016/j.dibe.2024.100518","DOIUrl":null,"url":null,"abstract":"<div><p>Calcium silicate cement (CSC) is a non-hydraulic cement that solidifies in moist conditions with CO<sub>2</sub> curing. To contribute to the standardization of CSC, the material has been produced locally, and the microstructural characterization of the carbonation products of CSC samples with water-to-cement (W/C) ratios of 0.35, 0.4 and 0.45 at 10% CO<sub>2</sub> concentration using XRD, <sup>29</sup>Si MAS NMR, <sup>1</sup>H NMR and compressive strength tests. CSC primarily consists of Q<sup>0</sup>, Q<sup>1</sup> and Q<sup>2</sup> silica species, among which β-C<sub>2</sub>S and β-CS exhibit higher reactivity to CO<sub>2</sub> curing. The obtained results confirm the presence of calcite and amorphous phases as the main carbonation products, which become more prominent with an elapse in CO<sub>2</sub> curing. The CO<sub>2</sub> uptake of CSC samples with a W/C ratio of 0.45 was 8 g per 100 g binder, although a higher W/C ratio induced a relatively larger capillary and gel pore width, consequently reducing the strength of CSC.</p></div>","PeriodicalId":34137,"journal":{"name":"Developments in the Built Environment","volume":"19 ","pages":"Article 100518"},"PeriodicalIF":6.2000,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666165924001996/pdfft?md5=4135ac542b588e3df9059bf3d6cdf85d&pid=1-s2.0-S2666165924001996-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developments in the Built Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666165924001996","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Calcium silicate cement (CSC) is a non-hydraulic cement that solidifies in moist conditions with CO2 curing. To contribute to the standardization of CSC, the material has been produced locally, and the microstructural characterization of the carbonation products of CSC samples with water-to-cement (W/C) ratios of 0.35, 0.4 and 0.45 at 10% CO2 concentration using XRD, 29Si MAS NMR, 1H NMR and compressive strength tests. CSC primarily consists of Q0, Q1 and Q2 silica species, among which β-C2S and β-CS exhibit higher reactivity to CO2 curing. The obtained results confirm the presence of calcite and amorphous phases as the main carbonation products, which become more prominent with an elapse in CO2 curing. The CO2 uptake of CSC samples with a W/C ratio of 0.45 was 8 g per 100 g binder, although a higher W/C ratio induced a relatively larger capillary and gel pore width, consequently reducing the strength of CSC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳固化硅酸钙水泥的微结构表征
硅酸钙水泥(CSC)是一种在潮湿条件下通过二氧化碳固化的非液压水泥。为了促进硅酸钙水泥的标准化,我们在当地生产了这种材料,并使用 XRD、29Si MAS NMR、1H NMR 和抗压强度测试对水灰比(W/C)为 0.35、0.4 和 0.45、二氧化碳浓度为 10% 的硅酸钙水泥样品的碳化产物进行了微观结构表征。CSC 主要由 Q0、Q1 和 Q2 三种二氧化硅组成,其中 β-C2S 和 β-CS 对二氧化碳固化具有更高的反应活性。所获得的结果证实,方解石和无定形相是主要的碳化产物,随着二氧化碳固化时间的推移,它们变得更加突出。W/C 比为 0.45 的 CSC 样品的二氧化碳吸收量为每 100 克粘结剂 8 克,但 W/C 比越高,毛细管和凝胶孔宽度相对越大,从而降低了 CSC 的强度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.40
自引率
1.20%
发文量
31
审稿时长
22 days
期刊介绍: Developments in the Built Environment (DIBE) is a recently established peer-reviewed gold open access journal, ensuring that all accepted articles are permanently and freely accessible. Focused on civil engineering and the built environment, DIBE publishes original papers and short communications. Encompassing topics such as construction materials and building sustainability, the journal adopts a holistic approach with the aim of benefiting the community.
期刊最新文献
Study on the pore structure of eco-regenerated mortar using corn cob based on nuclear magnetic resonance Innovative design and sensing performance of a novel large-strain sensor for prestressed FRP plates Effects of superabsorbent polymer and natural zeolite on shrinkage, mechanical properties, and porosity in ultra-high performance concretes Explainable machine learning model for load-deformation correlation in long-span suspension bridges using XGBoost-SHAP Extending Information Delivery Specifications for digital building permit requirements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1