Min Huang , Fan Zhang , Yan Zhu, Hai Zeng, Shuang Li
{"title":"MEST promotes immune escape in gastric cancer by downregulating MHCI expression via SHP2","authors":"Min Huang , Fan Zhang , Yan Zhu, Hai Zeng, Shuang Li","doi":"10.1016/j.biocel.2024.106621","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear.</p></div><div><h3>Methods</h3><p>Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape <em>in vivo</em>.</p></div><div><h3>Results</h3><p>MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8<sup>+</sup> T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. <em>In vivo</em> experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity.</p></div><div><h3>Conclusion</h3><p>In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear.
Methods
Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape in vivo.
Results
MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8+ T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. In vivo experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity.
Conclusion
In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.