MEST promotes immune escape in gastric cancer by downregulating MHCI expression via SHP2

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-08-22 DOI:10.1016/j.biocel.2024.106621
Min Huang , Fan Zhang , Yan Zhu, Hai Zeng, Shuang Li
{"title":"MEST promotes immune escape in gastric cancer by downregulating MHCI expression via SHP2","authors":"Min Huang ,&nbsp;Fan Zhang ,&nbsp;Yan Zhu,&nbsp;Hai Zeng,&nbsp;Shuang Li","doi":"10.1016/j.biocel.2024.106621","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear.</p></div><div><h3>Methods</h3><p>Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape <em>in vivo</em>.</p></div><div><h3>Results</h3><p>MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8<sup>+</sup> T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. <em>In vivo</em> experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity.</p></div><div><h3>Conclusion</h3><p>In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Background

Immune escape is a major obstacle to T-cell-based immunotherapy for cancers such as gastric cancer (GC). Mesoderm-specific transcript (MEST) is a tumor-promoting factor that regulates multiple oncogenic signaling pathways. However, the role of MEST-mediated immune escape is unclear.

Methods

Bioinformatics analysis of MEST expression and enrichment pathways were performed Quantitative reverse transcription PCR (qPCR) or western blot was used to detect the expression of MEST, Src homology region 2-containing protein tyrosine phosphatase 2 (SHP2), Major histocompatibility class I (MHCI)-related genes. Cell function was assessed by Cell Counting Kit (CCK)-8, Transwell, Lactate dehydrogenase (LDH) kit, flow cytometry, enzyme-linked immunosorbent assay (ELISA), and immunohistochemistry (IHC). Xenograft nude mice and immune-reconstructed mice were used to test the effects of different treatments on tumor growth and immune escape in vivo.

Results

MEST was upregulated in GC and promoted tumor proliferation, migration, and invasion. Rescue experiments revealed that TNO155 treatment or knockdown of SHP2 promoted the killing ability of CD8+ T cells and the expression of granzyme B (GZMB) and interferon-gamma (IFN-γ), and MEST overexpression reversed the effect. In vivo experiments confirmed that MEST promoted tumor growth, knockdown of MEST inhibited immune escape in GC, and that combination treatment with anti-PD-1 improved anti-tumor activity.

Conclusion

In this study, we demonstrated that MEST inhibited IFN-γ secretion from CD8+ T cells by up-regulating SHP2, thereby downregulating MHCI expression in GC cells to promote immune escape and providing a new T cell-based therapeutic potential for GC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEST 通过 SHP2 下调 MHCI 的表达,促进胃癌的免疫逃逸
背景免疫逃逸是基于 T 细胞的癌症(如胃癌)免疫疗法的主要障碍。中胚层特异性转录物(MEST)是一种肿瘤促进因子,可调控多种致癌信号通路。方法 对中胚层特异性转录本(MEST)的表达和富集途径进行生物信息学分析 采用定量反转录 PCR(qPCR)或 Western 印迹法检测中胚层特异性转录本、含 Src 同源区 2 蛋白酪氨酸磷酸酶 2(SHP2)、主要组织相容性 I 类(MHCI)相关基因的表达。细胞功能通过细胞计数试剂盒(CCK)-8、Transwell、乳酸脱氢酶(LDH)试剂盒、流式细胞术、酶联免疫吸附试验(ELISA)和免疫组织化学(IHC)进行评估。用异种移植裸鼠和免疫重建小鼠测试不同处理对体内肿瘤生长和免疫逃逸的影响。拯救实验表明,TNO155处理或敲除SHP2可促进CD8+ T细胞的杀伤能力以及颗粒酶B(GZMB)和γ干扰素(IFN-γ)的表达,而MEST的过表达可逆转这种效应。结论在这项研究中,我们证明了MEST通过上调SHP2抑制CD8+ T细胞分泌IFN-γ,从而下调GC细胞中MHCI的表达,促进免疫逃逸,为基于T细胞的GC治疗提供了新的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1