Ye Zhang , Yining Yao , Fengjuan Xie , Wen li Hu , Yingying Zou , Qian Zhao , Shumin Li , Yannan Yang , Zhengying Gu , Chengzhong Yu
{"title":"Iron consumption strengthens anti-tumoral STING activation mediated by manganese-based nanoparticles","authors":"Ye Zhang , Yining Yao , Fengjuan Xie , Wen li Hu , Yingying Zou , Qian Zhao , Shumin Li , Yannan Yang , Zhengying Gu , Chengzhong Yu","doi":"10.1016/j.nantod.2024.102446","DOIUrl":null,"url":null,"abstract":"<div><p>The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, as an important part in innate immunity, has recently emerged as a promising target for improving tumor therapy. Manganese ions (Mn<sup>2+</sup>) are an emerging agonist in the cGAS-STING pathway with multifaceted advantages, however manganese-based nanoparticles alone as the Mn<sup>2+</sup> source have shown limited activity in eliciting anti-tumor immune responses compared to conventional organic STING agonists, and the underlying mechanism of the suboptimal efficiency remains unclear. Here, we demonstrate that intratumoral iron ions attenuate manganese-induced anti-tumor STING activation, and that the utilization of deferoxamine (DFO), an iron chelator that depletes intratumoral iron ions, effectively increases the intracellular accumulation of Mn<sup>2+</sup> and thus promoted the STING activation efficiency of a hyaluronic acid modified manganese carbonate-silica hybrid nanoparticle (DS@Mn-H) in macrophages. The mechanism study suggests that the addition of DFO inhibited the expression of ferroportin (FPN), which serves as a Mn<sup>2+</sup> exporter to reduce intracellular Mn<sup>2+</sup> level. The synergistic effect of DS@Mn-H and DFO achieved excellent anti-tumor activities in a mouse colon carcinoma model. This work provides new insights on improving the Mn-based metallo-immunotherapy of cancer.</p></div>","PeriodicalId":395,"journal":{"name":"Nano Today","volume":"58 ","pages":"Article 102446"},"PeriodicalIF":13.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1748013224003025/pdfft?md5=9b8d2031c4e24675decc08d04016ae5a&pid=1-s2.0-S1748013224003025-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Today","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1748013224003025","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, as an important part in innate immunity, has recently emerged as a promising target for improving tumor therapy. Manganese ions (Mn2+) are an emerging agonist in the cGAS-STING pathway with multifaceted advantages, however manganese-based nanoparticles alone as the Mn2+ source have shown limited activity in eliciting anti-tumor immune responses compared to conventional organic STING agonists, and the underlying mechanism of the suboptimal efficiency remains unclear. Here, we demonstrate that intratumoral iron ions attenuate manganese-induced anti-tumor STING activation, and that the utilization of deferoxamine (DFO), an iron chelator that depletes intratumoral iron ions, effectively increases the intracellular accumulation of Mn2+ and thus promoted the STING activation efficiency of a hyaluronic acid modified manganese carbonate-silica hybrid nanoparticle (DS@Mn-H) in macrophages. The mechanism study suggests that the addition of DFO inhibited the expression of ferroportin (FPN), which serves as a Mn2+ exporter to reduce intracellular Mn2+ level. The synergistic effect of DS@Mn-H and DFO achieved excellent anti-tumor activities in a mouse colon carcinoma model. This work provides new insights on improving the Mn-based metallo-immunotherapy of cancer.
期刊介绍:
Nano Today is a journal dedicated to publishing influential and innovative work in the field of nanoscience and technology. It covers a wide range of subject areas including biomaterials, materials chemistry, materials science, chemistry, bioengineering, biochemistry, genetics and molecular biology, engineering, and nanotechnology. The journal considers articles that inform readers about the latest research, breakthroughs, and topical issues in these fields. It provides comprehensive coverage through a mixture of peer-reviewed articles, research news, and information on key developments. Nano Today is abstracted and indexed in Science Citation Index, Ei Compendex, Embase, Scopus, and INSPEC.