Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong
{"title":"Next-generation mapping of the salicylic acid signaling hub and transcriptional cascade.","authors":"Jordan Powers, Xing Zhang, Andres V Reyes, Raul Zavaliev, Roni Ochakovski, Shou-Ling Xu, Xinnian Dong","doi":"10.1016/j.molp.2024.08.008","DOIUrl":null,"url":null,"abstract":"<p><p>For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.</p>","PeriodicalId":19012,"journal":{"name":"Molecular Plant","volume":" ","pages":"1558-1572"},"PeriodicalIF":17.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11540436/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Plant","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.molp.2024.08.008","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
For over 60 years, salicylic acid (SA) has been known as a plant immune signal required for basal and systemic acquired resistance. SA activates these immune responses by reprogramming ∼20% of the transcriptome through NPR1. However, components in the NPR1 signaling hub, which appears as nuclear condensates, and the NPR1 signaling cascade have remained elusive due to difficulties in studying this transcriptional cofactor, whose chromatin association is indirect and likely transient. To overcome this challenge, we applied TurboID to divulge the NPR1 proxiome, which detected almost all known NPR1 interactors as well as new components of transcription-related complexes. Testing of new components showed that chromatin remodeling and histone demethylation contribute to SA-induced resistance. Globally, the NPR1 proxiome has a striking similarity to the proxiome of GBPL3 that is involved in SA synthesis, except for associated transcription factors (TFs), suggesting that common regulatory modules are recruited to reprogram specific transcriptomes by transcriptional cofactors, like NPR1, through binding to unique TFs. Stepwise green fluorescent protein-tagged factor cleavage under target and release using nuclease (greenCUT&RUN) analyses showed that, upon SA induction, NPR1 initiates the transcriptional cascade primarily through association with TGACG-binding TFs to induce expression of secondary TFs, predominantly WRKYs. Further, WRKY54 and WRKY70 were identified to play a major role in inducing immune-output genes without interacting with NPR1 at the chromatin. Moreover, loss of condensate formation function of NPR1 decreases its chromatin association and transcriptional activity, indicating the importance of condensates in organizing the NPR1 signaling hub and initiating the transcriptional cascade. Collectively, this study demonstrates how combinatorial applications of TurboID and stepwise greenCUT&RUN transcend traditional genetic methods to globally map signaling hubs and transcriptional cascades for in-depth explorations.
期刊介绍:
Molecular Plant is dedicated to serving the plant science community by publishing novel and exciting findings with high significance in plant biology. The journal focuses broadly on cellular biology, physiology, biochemistry, molecular biology, genetics, development, plant-microbe interaction, genomics, bioinformatics, and molecular evolution.
Molecular Plant publishes original research articles, reviews, Correspondence, and Spotlights on the most important developments in plant biology.