Ilaine Silveira Matos, Mickey Boakye, Izzi Niewiadomski, Monica Antonio, Sonoma Carlos, Breanna Carrillo Johnson, Ashley Chu, Andrea Echevarria, Adrian Fontao, Lisa Garcia, Diana Kalantar, Srinivasan Madhavan, Joseph Mann, Samantha McDonough, James Rohde, Meg Scudder, Satvik Sharma, Jason To, Connor Tomaka, Bradley Vu, Nicole Yokota, Holly Forbes, Mark Fricker, Benjamin Wong Blonder
{"title":"Leaf venation network architecture coordinates functional trade-offs across vein spatial scales: evidence for multiple alternative designs","authors":"Ilaine Silveira Matos, Mickey Boakye, Izzi Niewiadomski, Monica Antonio, Sonoma Carlos, Breanna Carrillo Johnson, Ashley Chu, Andrea Echevarria, Adrian Fontao, Lisa Garcia, Diana Kalantar, Srinivasan Madhavan, Joseph Mann, Samantha McDonough, James Rohde, Meg Scudder, Satvik Sharma, Jason To, Connor Tomaka, Bradley Vu, Nicole Yokota, Holly Forbes, Mark Fricker, Benjamin Wong Blonder","doi":"10.1111/nph.20037","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>\n \n </p><ul>\n \n \n <li>Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs.</li>\n \n \n <li>Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.</li>\n \n \n <li>We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale.</li>\n \n \n <li>This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.</li>\n </ul>\n \n </div>","PeriodicalId":214,"journal":{"name":"New Phytologist","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Phytologist","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/nph.20037","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Variation in leaf venation network architecture may reflect trade-offs among multiple functions including efficiency, resilience, support, cost, and resistance to drought and herbivory. However, our knowledge about architecture-function trade-offs is mostly based on studies examining a small number of functional axes, so we still lack a more integrative picture of multidimensional trade-offs.
Here, we measured architecture and functional traits on 122 ferns and angiosperms species to describe how trade-offs vary across phylogenetic groups and vein spatial scales (small, medium, and large vein width) and determine whether architecture traits at each scale have independent or integrated effects on each function.
We found that generalized architecture-function trade-offs are weak. Architecture strongly predicts leaf support and damage resistance axes but weakly predicts efficiency and resilience axes. Architecture traits at different spatial scales contribute to different functional axes, allowing plants to independently modulate different functions by varying network properties at each scale.
This independence of vein architecture traits within and across spatial scales may enable evolution of multiple alternative leaf network designs with similar functioning.
期刊介绍:
New Phytologist is an international electronic journal published 24 times a year. It is owned by the New Phytologist Foundation, a non-profit-making charitable organization dedicated to promoting plant science. The journal publishes excellent, novel, rigorous, and timely research and scholarship in plant science and its applications. The articles cover topics in five sections: Physiology & Development, Environment, Interaction, Evolution, and Transformative Plant Biotechnology. These sections encompass intracellular processes, global environmental change, and encourage cross-disciplinary approaches. The journal recognizes the use of techniques from molecular and cell biology, functional genomics, modeling, and system-based approaches in plant science. Abstracting and Indexing Information for New Phytologist includes Academic Search, AgBiotech News & Information, Agroforestry Abstracts, Biochemistry & Biophysics Citation Index, Botanical Pesticides, CAB Abstracts®, Environment Index, Global Health, and Plant Breeding Abstracts, and others.