Jorge Cubo, Mariana V A Sena, Romain Pellarin, Mathieu G Faure-Brac, Paul Aubier, Cassandra Cheyron, Stéphane Jouve, Ronan Allain, Nour-Eddine Jalil
{"title":"Integrative paleophysiology of the metriorhynchoid Pelagosaurus typus (Pseudosuchia, Thalattosuchia).","authors":"Jorge Cubo, Mariana V A Sena, Romain Pellarin, Mathieu G Faure-Brac, Paul Aubier, Cassandra Cheyron, Stéphane Jouve, Ronan Allain, Nour-Eddine Jalil","doi":"10.1002/ar.25548","DOIUrl":null,"url":null,"abstract":"<p><p>Paleophysiology is an emergent discipline. Organismic (integrative) approaches seem more appropriate than studies focusing on the variation of specific features because traits are tightly related in actual organisms. Here, we used such an organismic approach (including lifestyle, thermometabolism, and hunting behavior) to understand the paleobiology of the lower Jurassic (Toarcian) thalattosuchian metriorhynchoid Pelagosaurus typus. First, we show that the lifestyle (aquatic, amphibious, terrestrial) has an effect on the femoral compactness profiles in amniotes. The profile of Pelagosaurus indicates that it was amphibious, with a foraging activity in shallow marine environments (as suggested by the presence of salt glands) and thermoregulatory basking behavior in land (as suggested by the presence of osteoderms with highly developed ornamentation). As for the thermometabolism, we show that the mass-independent resting metabolic rate of Pelagosaurus is relatively high compared to the sample of extant ectothermic amniotes, but analysis of vascular canal diameter and inferences of red blood cell size refute the hypothesis suggesting incipient endothermy. Finally, the foraging behavior was inferred using two proxies. Pelagosaurus had a mass-independent maximum metabolic rate and an aerobic scope higher than those measured in the almost motionless Iguana iguana, similar to those measured in the sit-and-wait predator Crocodylus porosus but lower than those quantified in the active hunter Varanus gouldii. These results suggest that Pelagosaurus may have had a hunting behavior involving a slow sustained swimming or a patient waiting in shallow waters, and may have caught preys like gharials, using fast sideways sweeping motions of the head.</p>","PeriodicalId":50965,"journal":{"name":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","volume":" ","pages":"394-411"},"PeriodicalIF":1.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11725722/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatomical Record-Advances in Integrative Anatomy and Evolutionary Biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/ar.25548","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/23 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Paleophysiology is an emergent discipline. Organismic (integrative) approaches seem more appropriate than studies focusing on the variation of specific features because traits are tightly related in actual organisms. Here, we used such an organismic approach (including lifestyle, thermometabolism, and hunting behavior) to understand the paleobiology of the lower Jurassic (Toarcian) thalattosuchian metriorhynchoid Pelagosaurus typus. First, we show that the lifestyle (aquatic, amphibious, terrestrial) has an effect on the femoral compactness profiles in amniotes. The profile of Pelagosaurus indicates that it was amphibious, with a foraging activity in shallow marine environments (as suggested by the presence of salt glands) and thermoregulatory basking behavior in land (as suggested by the presence of osteoderms with highly developed ornamentation). As for the thermometabolism, we show that the mass-independent resting metabolic rate of Pelagosaurus is relatively high compared to the sample of extant ectothermic amniotes, but analysis of vascular canal diameter and inferences of red blood cell size refute the hypothesis suggesting incipient endothermy. Finally, the foraging behavior was inferred using two proxies. Pelagosaurus had a mass-independent maximum metabolic rate and an aerobic scope higher than those measured in the almost motionless Iguana iguana, similar to those measured in the sit-and-wait predator Crocodylus porosus but lower than those quantified in the active hunter Varanus gouldii. These results suggest that Pelagosaurus may have had a hunting behavior involving a slow sustained swimming or a patient waiting in shallow waters, and may have caught preys like gharials, using fast sideways sweeping motions of the head.