MEMS-based meta-emitter with actively tunable radiation power characteristic

IF 5.5 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanoscale Research Letters Pub Date : 2024-08-24 DOI:10.1186/s11671-024-04088-4
Kunye Li, Yuhao Liang, Yu-Sheng Lin
{"title":"MEMS-based meta-emitter with actively tunable radiation power characteristic","authors":"Kunye Li,&nbsp;Yuhao Liang,&nbsp;Yu-Sheng Lin","doi":"10.1186/s11671-024-04088-4","DOIUrl":null,"url":null,"abstract":"<div><p>We propose a meta-emitter based on micro-electro-mechanical system (MEMS) technology. The main structure of the meta-emitter unit cell is composed of four symmetrically split crosses of Au and SiO<sub>2</sub> bilayer cantilevers. By changing the size of the cantilevers, this MEMS-based meta-emitter can realize the tunable perfect absorption, and the absorption spectrum is within the longwave infrared (LWIR) wavelength from 8.90 to 11.90 µm. When the surface temperature of the meta-emitter rises, the electrothermal actuation mechanism is performed through the different thermal expansion coefficient (TEC) of the bilayer cantilevers. Therefore, the cantilevers will be bent downward and the bending height of the cantilevers decreases linearly. In such case, the peak value of thermal radiation power can be tuned from the wavelength of 9.52 µm to 10.48 µm when the temperature of meta-emitter is increased from 293 to 1290 K. This proposed MEMS-based meta-emitter is an excellent LWIR light source and has potential application prospects in gas sensing, infrared spectroscopy analysis, medical care and so on.</p></div>","PeriodicalId":51136,"journal":{"name":"Nanoscale Research Letters","volume":"19 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11344753/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1186/s11671-024-04088-4","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

We propose a meta-emitter based on micro-electro-mechanical system (MEMS) technology. The main structure of the meta-emitter unit cell is composed of four symmetrically split crosses of Au and SiO2 bilayer cantilevers. By changing the size of the cantilevers, this MEMS-based meta-emitter can realize the tunable perfect absorption, and the absorption spectrum is within the longwave infrared (LWIR) wavelength from 8.90 to 11.90 µm. When the surface temperature of the meta-emitter rises, the electrothermal actuation mechanism is performed through the different thermal expansion coefficient (TEC) of the bilayer cantilevers. Therefore, the cantilevers will be bent downward and the bending height of the cantilevers decreases linearly. In such case, the peak value of thermal radiation power can be tuned from the wavelength of 9.52 µm to 10.48 µm when the temperature of meta-emitter is increased from 293 to 1290 K. This proposed MEMS-based meta-emitter is an excellent LWIR light source and has potential application prospects in gas sensing, infrared spectroscopy analysis, medical care and so on.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于 MEMS 的元发射器,具有主动可调的辐射功率特性。
我们提出了一种基于微机电系统(MEMS)技术的元发射器。元发射极单元的主要结构由四个对称分割的金和二氧化硅双层悬臂交叉组成。通过改变悬臂的尺寸,这种基于 MEMS 的元发射器可以实现可调的完美吸收,吸收光谱在 8.90 至 11.90 µm 的长波红外(LWIR)波长范围内。当元发射器的表面温度升高时,通过双层悬臂的不同热膨胀系数(TEC)来实现电热致动机制。因此,悬臂将向下弯曲,悬臂的弯曲高度线性降低。在这种情况下,当元发射器的温度从 293 K 升至 1290 K 时,热辐射功率的峰值可从 9.52 µm 调至 10.48 µm。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanoscale Research Letters
Nanoscale Research Letters 工程技术-材料科学:综合
CiteScore
11.30
自引率
0.00%
发文量
110
审稿时长
48 days
期刊介绍: Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.
期刊最新文献
Correlation of precisely fabricated geometric characteristics of DNA-origami nanostructures with their cellular entry in human lens epithelial cells Synergistic activity of Pitstop-2 and 1,6-hexanediol in aggressive human lung cancer cells Phytonanoparticles as novel drug carriers for enhanced osteogenesis and osseointegration Investigation of chitin grafting: thermal, antioxidant and antitumor properties Revolutionizing radiotherapy: gold nanoparticles with polyphenol coating as novel enhancers in breast cancer cells—an in vitro study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1