Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study.

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-22 DOI:10.1016/j.jhazmat.2024.135598
Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong
{"title":"Decomposition of waterside plants greatly affects the transformation and mobility of sedimentary antimony in water-sediment systems after emergency treatment: A microcosm study.","authors":"Jining Li, Mengdi Liu, Lizhi Tong, Yiwen Zhou, Linghao Kong","doi":"10.1016/j.jhazmat.2024.135598","DOIUrl":null,"url":null,"abstract":"<p><p>Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)<sub>3</sub> hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)<sub>3</sub> dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135598"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135598","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/22 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polyferric sulfate (PFS) coagulation has proven to be effective in addressing antimony (Sb) water pollution accidents; however, the impact of waterside plant decomposition on its effectiveness has not been adequately elucidated. This study investigated the effects of Alternanthera philoxeroides (AP) and Digitaria sanguinalis (DS) decomposition on Sb cycling after PFS treatment. Without plant decomposition, the Fe(OH)3 hydrolysate-associated Sb remained stable, and the sediment continued to exhibit Sb sink properties. Plant residue decomposition facilitated sedimentary Sb release, and DS decomposition had a greater impact than AP decomposition. The strong decomposition phases triggered abiotic/biotic reduction processes, leading to Fe(OH)3 dissolution and subsequent Sb(V) release. Concurrently, sulfate reduction and dissolved organic matter (DOM) release regulated Sb mobility. In addition, Sb(V) reduction occurred, and Sb(III) was elevated in the overlying water. The Sb(III) levels gradually decreased during the later aerobic stages, however, did not completely disappear within a short timeframe. Furthermore, the role of the sediment as an Sb sink was significantly hindered, maintaining relatively high levels of dissolved Sb. Sedimentary Sb speciation analysis revealed that plant decomposition induced a shift in Fe-oxyhydroxide-bound Sb to more bioavailable and stable fractions. Our results indicate that plant residue decomposition easily deteriorates PFS efficiency and increases the risk of secondary Sb pollution in water-sediment systems.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
水边植物的分解在很大程度上影响着应急处理后水沙系统中沉积锑的转化和迁移:一项微观世界研究。
事实证明,聚铁硫酸盐(PFS)混凝法可有效解决锑(Sb)水污染事故;然而,水边植物分解对其效果的影响尚未得到充分阐明。本研究调查了在 PFS 处理后,Alternanthera philoxeroides(AP)和 Digitaria sanguinalis(DS)分解对锑循环的影响。在没有植物分解的情况下,Fe(OH)3水解物所掺杂的锑保持稳定,沉积物继续表现出锑沉降特性。植物残体分解促进了沉积物中锑的释放,DS分解比AP分解的影响更大。强烈的分解阶段引发了非生物/生物还原过程,导致 Fe(OH)3 溶解并随后释放出 Sb(V)。同时,硫酸盐还原和溶解有机物(DOM)释放也调节着锑的迁移。此外,还发生了 Sb(V)还原,上覆水中的 Sb(III)升高。在后期好氧阶段,Sb(III) 含量逐渐下降,但并未在短时间内完全消失。此外,沉积物作为锑汇的作用明显受阻,溶解锑的水平相对较高。沉积物锑分类分析表明,植物分解导致与铁氧氢氧化物结合的锑向生物可利用性更高和更稳定的馏分转移。我们的研究结果表明,植物残渣分解很容易降低 PFS 效率,增加水-沉积物系统中锑二次污染的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enrichment and catalysis effect of 2D/2D g-C3N4/Ti3C2 for promoting organic matter degradation and heavy metal reduction in plasma systems: Unveiling the promotion and redox mechanism. Variation in photoactivity of dissolved black carbon during the fractionation process and the role in the photodegradation of various antibiotics. Antimony-bearing schwertmannite transformation to goethite: A driver of antimony mobilization in acid mine drainage. Assessing the stereoselective bioactivity and biotoxicity of penthiopyrad in soil environment for efficacy improvement and hazard reduction. Gene biomarkers in estuarine oysters indicate pollution profiles of metals, brominated flame retardants, and poly- and perfluoroalkyl substances in and near the Laizhou Bay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1