Photodegradation process and mechanism of 2,3,6-trichloronaphthalene on kaolinite surfaces under ultraviolet-A irradiation: Role of fulvic acid and density functional theory calculations.

YingTan Yu, WenBo Si, Shumeng Zhao, ShiMeng Wang, MengDi Liu, Bing Fan, Shuang Xue, Jian Wang, Jing Xu
{"title":"Photodegradation process and mechanism of 2,3,6-trichloronaphthalene on kaolinite surfaces under ultraviolet-A irradiation: Role of fulvic acid and density functional theory calculations.","authors":"YingTan Yu, WenBo Si, Shumeng Zhao, ShiMeng Wang, MengDi Liu, Bing Fan, Shuang Xue, Jian Wang, Jing Xu","doi":"10.1016/j.jhazmat.2025.137481","DOIUrl":null,"url":null,"abstract":"<p><p>Polychlorinated naphthalenes (PCNs), a class of persistent organic pollutants (POPs), pose significant environmental and health risks, with trichloronaphthalene being a predominant congener in atmospheric particulate matter. This study investigates the photodegradation of 2,3,6-trichloronaphthalene (CN-26) on kaolinite surfaces under ultraviolet-A (UV-A) irradiation, focusing on the impact of fulvic acid (FA), temperature, humidity, and pH. The photodegradation mechanism of CN-26 was inferred via radical quenching experiments and density functional theory (DFT) calculations. The optimized degradation rate of CN-26 was 75.57 % at 25 °C, 70 % humidity, and pH 7 when FA was added at a concentration of 30 mg kg<sup>-1</sup>. Based on the radical quenching experiments, •OH are the primary active species involved in the degradation of CN-26, followed by electrons. In the absence of FA, •OH contributed 82.21 %, while electronic was 17.79 %. Conversely, in the presence of FA, the contribution rates of •OH, and electronic are 68.32 % and 21.21 % respectively. DFT calculations indicated that the 6 C site of CN-26 exhibited the highest susceptibility to radical attack, with the highest FED<sup>2</sup><sub>HOMO</sub>+FED<sup>2</sup><sub>LUMO</sub> value (0.25273), corroborated by averaged local ionization energy (ALIE) analysis. In the analysis of the reaction of •OH with CN-26, the lowest transition state ΔrG value of 1.09 kcal mol<sup>-1</sup> was observed for compound 6 C, indicating that this site is the most susceptible to •OH attack. The degradation products of CN-26 were detected using gas chromatography-mass spectrometry (GC-MS), and the possible photodegradation pathways were proposed, which included dechlorination, hydroxylation, and aromatic ring opening. This study would provide insights into the photochemical behaviors of PCNs.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"488 ","pages":"137481"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.137481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Polychlorinated naphthalenes (PCNs), a class of persistent organic pollutants (POPs), pose significant environmental and health risks, with trichloronaphthalene being a predominant congener in atmospheric particulate matter. This study investigates the photodegradation of 2,3,6-trichloronaphthalene (CN-26) on kaolinite surfaces under ultraviolet-A (UV-A) irradiation, focusing on the impact of fulvic acid (FA), temperature, humidity, and pH. The photodegradation mechanism of CN-26 was inferred via radical quenching experiments and density functional theory (DFT) calculations. The optimized degradation rate of CN-26 was 75.57 % at 25 °C, 70 % humidity, and pH 7 when FA was added at a concentration of 30 mg kg-1. Based on the radical quenching experiments, •OH are the primary active species involved in the degradation of CN-26, followed by electrons. In the absence of FA, •OH contributed 82.21 %, while electronic was 17.79 %. Conversely, in the presence of FA, the contribution rates of •OH, and electronic are 68.32 % and 21.21 % respectively. DFT calculations indicated that the 6 C site of CN-26 exhibited the highest susceptibility to radical attack, with the highest FED2HOMO+FED2LUMO value (0.25273), corroborated by averaged local ionization energy (ALIE) analysis. In the analysis of the reaction of •OH with CN-26, the lowest transition state ΔrG value of 1.09 kcal mol-1 was observed for compound 6 C, indicating that this site is the most susceptible to •OH attack. The degradation products of CN-26 were detected using gas chromatography-mass spectrometry (GC-MS), and the possible photodegradation pathways were proposed, which included dechlorination, hydroxylation, and aromatic ring opening. This study would provide insights into the photochemical behaviors of PCNs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Photodegradation process and mechanism of 2,3,6-trichloronaphthalene on kaolinite surfaces under ultraviolet-A irradiation: Role of fulvic acid and density functional theory calculations. Regulating the electronic structure of iron sites in single-atom catalyst with interfacial chemical bond to enhance Fenton-like reaction. Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines. Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. Square-wave pulsed potential driven electrocatalytic degradation of 4-chlorophenol using Fe-Ni/rGO/PPy@NF three dimensional electrode.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1