Synergism of endophytic microbiota and plants promotes the removal of polycyclic aromatic hydrocarbons from the Alfalfa rhizosphere.

Journal of hazardous materials Pub Date : 2024-10-05 Epub Date: 2024-08-20 DOI:10.1016/j.jhazmat.2024.135513
Xianghui Cheng, Longfei Jiang, Xuan Zhao, Shuang Wang, Jibing Li, Chunling Luo, Gan Zhang
{"title":"Synergism of endophytic microbiota and plants promotes the removal of polycyclic aromatic hydrocarbons from the Alfalfa rhizosphere.","authors":"Xianghui Cheng, Longfei Jiang, Xuan Zhao, Shuang Wang, Jibing Li, Chunling Luo, Gan Zhang","doi":"10.1016/j.jhazmat.2024.135513","DOIUrl":null,"url":null,"abstract":"<p><p>Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.</p>","PeriodicalId":94082,"journal":{"name":"Journal of hazardous materials","volume":"478 ","pages":"135513"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of hazardous materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2024.135513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/20 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Endophytic bacteria can promote plant growth and accelerate pollutant degradation. However, it is unclear whether endophytic consortia (Consortium_E) can stabilize colonisation and degradation. We inoculated Consortium_E into the rhizosphere to enhance endophytic bacteria survival and promote pollutant degradation. Rhizosphere-inoculated Consortium_E enhanced polycyclic aromatic hydrocarbon (PAH) degradation rates by 11.5-13.1 % compared with sole bioaugmentation and plant treatments. Stable-isotope-probing (SIP) showed that the rhizosphere-inoculated Consortium_E had the largest number of degraders (8 amplicon sequence variants). Furthermore, only microbes from Consortium_E were identified among the degraders in bioaugmentation treatments, indicating that directly participated in phenanthrene metabolism. Interestingly, Consortium_E reshaped the community structure of degraders without significantly altering the rhizosphere community structure, and strengthened the core position of degraders in the network, facilitating close interactions between degraders and non-degraders in the rhizosphere, which were crucial for ensuring stable functionality. The synergistic effect between plants and Consortium_E significantly enhanced the upregulation of aromatic hydrocarbon degradation and auxiliary degradation pathways in the rhizosphere. These pathways showed a non-significant increasing trend in the uninoculated rhizosphere compared with the control, indicating that Consortium_E primarily promotes rhizosphere effects. Our results explore the Consortium_E bioaugmentation mechanism, providing a theoretical basis for the ecological restoration of contaminated soils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内生微生物群与植物的协同作用促进了紫花苜蓿根瘤菌群对多环芳烃的清除。
内生细菌可以促进植物生长并加速污染物降解。然而,内生菌联合体(Consortium_E)能否稳定定殖和降解尚不清楚。我们将 Consortium_E 接种到根瘤菌层,以提高内生细菌的存活率并促进污染物降解。与单纯的生物增殖和植物处理相比,根瘤层接种 Consortium_E 可使多环芳烃(PAH)降解率提高 11.5-13.1%。稳定同位素探测(SIP)显示,根瘤菌圈接种的 Consortium_E 降解菌数量最多(8 个扩增子序列变体)。此外,在生物增殖处理中,降解菌中只有来自 Consortium_E 的微生物,这表明它们直接参与了菲代谢。有趣的是,Consortium_E 重塑了降解者的群落结构,而没有显著改变根瘤菌群落结构,并加强了降解者在网络中的核心地位,促进了根瘤菌群中降解者和非降解者之间的密切互动,这对确保稳定的功能至关重要。植物与 Consortium_E 之间的协同效应显著增强了根瘤菌圈中芳香烃降解和辅助降解途径的上调。与对照组相比,未接种的根瘤菌圈中这些途径呈非显著上升趋势,表明 Consortium_E 主要促进根瘤菌圈效应。我们的研究结果探索了 Consortium_E 的生物增殖机制,为污染土壤的生态修复提供了理论依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Melamine enhancing Cu-Fenton reaction for degradation of anthracyclines. Copper-nickel-MOF/nickel foam catalysts grown in situ for efficient electrochemical nitrate reduction to ammonia. Square-wave pulsed potential driven electrocatalytic degradation of 4-chlorophenol using Fe-Ni/rGO/PPy@NF three dimensional electrode. First insight into the environmental fate of N-acetylated sulfonamides from wastewater disinfection to solar-irradiated receiving waters. Hot spots of resistance: Transit centers as breeding grounds for airborne ARG-carrying bacteriophages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1