A generalized geometric mechanics theory for multi-curve-fold origami: Vertex constrained universal configurations

IF 5 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Journal of The Mechanics and Physics of Solids Pub Date : 2024-08-17 DOI:10.1016/j.jmps.2024.105829
{"title":"A generalized geometric mechanics theory for multi-curve-fold origami: Vertex constrained universal configurations","authors":"","doi":"10.1016/j.jmps.2024.105829","DOIUrl":null,"url":null,"abstract":"<div><p>Folding paper along curves leads to spatial structures that have curved surfaces meeting at spatial creases, defined as curve-fold origami. In this work, we provide an Eulerian framework focusing on the mechanics of arbitrary curve-fold origami, especially for multi-curve-fold origami with vertices. We start with single-curve-fold origami that has wide panels. Wide panel leads to different domains of mechanical responses induced by various generator distributions of the curved surface. The theories are then extended to multi-curve-fold origami, involving additional geometric correlations between creases. As an illustrative example, the deformation and equilibrium configuration of origami with annular creases are studied both theoretically and numerically. Afterward, single-vertex curved origami theory is studied as a special type of multi-curve-fold origami. We find that the extra periodicity at the vertex strongly constrains the configuration space, leading to a region near the vertex that has a striking universal equilibrium configuration regardless of the mechanical properties. Both theories and numerics confirm the existence of the universality in the near-field region. In addition, the far-field deformation is obtained via energy minimization and validated by finite element analysis. Our generalized multi-curve-fold origami theory, including the vertex-contained universality, is anticipated to provide a new understanding and framework for the shape programming of the curve-fold origami system.</p></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509624002953","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Folding paper along curves leads to spatial structures that have curved surfaces meeting at spatial creases, defined as curve-fold origami. In this work, we provide an Eulerian framework focusing on the mechanics of arbitrary curve-fold origami, especially for multi-curve-fold origami with vertices. We start with single-curve-fold origami that has wide panels. Wide panel leads to different domains of mechanical responses induced by various generator distributions of the curved surface. The theories are then extended to multi-curve-fold origami, involving additional geometric correlations between creases. As an illustrative example, the deformation and equilibrium configuration of origami with annular creases are studied both theoretically and numerically. Afterward, single-vertex curved origami theory is studied as a special type of multi-curve-fold origami. We find that the extra periodicity at the vertex strongly constrains the configuration space, leading to a region near the vertex that has a striking universal equilibrium configuration regardless of the mechanical properties. Both theories and numerics confirm the existence of the universality in the near-field region. In addition, the far-field deformation is obtained via energy minimization and validated by finite element analysis. Our generalized multi-curve-fold origami theory, including the vertex-contained universality, is anticipated to provide a new understanding and framework for the shape programming of the curve-fold origami system.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多曲线折纸的广义几何力学理论:顶点受限的通用构型
沿曲线折纸会产生空间结构,这些结构的曲面在空间折痕处相交,被定义为曲线折纸。在这项工作中,我们提供了一个欧拉框架,重点研究任意曲线折纸的力学,尤其是带顶点的多曲线折纸。我们从具有宽面板的单曲线折纸开始。宽面板会导致不同的机械响应域,这些响应域是由曲面的各种发电机分布所引起的。然后,这些理论被扩展到多曲线折纸,涉及折痕之间的额外几何关联。以环形折痕折纸为例,对其变形和平衡构造进行了理论和数值研究。随后,作为多曲线折纸的一种特殊类型,对单折线曲线折纸理论进行了研究。我们发现,顶点处的额外周期性强烈限制了构型空间,导致顶点附近的区域具有惊人的通用平衡构型,而与机械特性无关。理论和数值计算都证实了近场区域普遍性的存在。此外,还通过能量最小化获得了远场变形,并通过有限元分析进行了验证。我们的广义多曲线折纸理论,包括包含顶点的普遍性,有望为曲线折纸系统的形状编程提供新的理解和框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
期刊最新文献
The effect of stress barriers on unconventional-singularity-driven frictional rupture Analysis of shear localization in viscoplastic solids with pressure-sensitive structural transformations An analytic traction-displacement model for a reinforcing ligament bridging a crack at an arbitrary angle, including elastic, frictional, snubbing, yielding, creep, and fatigue phenomena A multiscale Bayesian method to quantify uncertainties in constitutive and microstructural parameters of 3D-printed composites Advanced modeling of higher-order kinematic hardening in strain gradient crystal plasticity based on discrete dislocation dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1