{"title":"A novel high-sensitivity sensor with asymmetric elliptical shaped exposed core and gold coating for sucrose and chemical concentration detection","authors":"Tanvir Hossain , Md. Arafat Rahman , Md. Rifat Rahman , Tanvir Ahmed","doi":"10.1016/j.sbsr.2024.100679","DOIUrl":null,"url":null,"abstract":"<div><p>The article introducing an innovative exposed core SPR biosensor employing an asymmetrical elliptic air hole PCF known for remarkable sensitivity. Gold-plated fiber sensor detects changes in refractive index. This sensor effectively covers a RI scale of 1.28 to 1.42 for analytes, showcasing its versatility in simultaneous detection. Taking into account the RI change at the outer surface, attractive sensing implementations such as optimal wavelength sensitivity of 97,000 nm/RIU and optimal amplitude sensitivity of 529.20 RIU<sup>−1</sup> are attained. Furthermore, with a resolution of 9.09 × 10<sup>−6</sup> RIU, a figure in merit of 170 RIU<sup>−1</sup>, an FWHM of 570 nm, and a detection accuracy of 0.0166 nm<sup>−1</sup>, the suggested sensor is impressive. This suggested sensor finds application in monitoring sucrose solutions across a spectrum ranging from 0% to 45% chemical concentration over time. It has an ideal amplitude sensitivity of 530.95 RIU<sup>−1</sup> and an ideal wavelength sensitivity of 10,000 nm/RIU for sucrose solutions at the 40% concentration level. Furthermore, the sensor shows an ideal wavelength sensitivity of 35,000 nm/RIU and an ideal amplitude sensitivity of 793.80 RIU<sup>−1</sup> for the detection of 2-propanol. Nevertheless, beyond sucrose noticing auspicious sensing qualities by the suggested sensor its feasibility for impact fully identifying a range of biochemical and organic samples. As a result, the proposed sensor holds promise as an exemplary choice the realms in biomedical sensing, the detection of lower RI analyses as well as chemical analysis. Streamlining practical application, the sensor's structure incorporates eight elliptical air holes, uncomplicated readily manufactural with existing technologies.</p></div>","PeriodicalId":424,"journal":{"name":"Sensing and Bio-Sensing Research","volume":"45 ","pages":"Article 100679"},"PeriodicalIF":5.4000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214180424000618/pdfft?md5=cd4622f7739f0092933261f5d3ca1c94&pid=1-s2.0-S2214180424000618-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensing and Bio-Sensing Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214180424000618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The article introducing an innovative exposed core SPR biosensor employing an asymmetrical elliptic air hole PCF known for remarkable sensitivity. Gold-plated fiber sensor detects changes in refractive index. This sensor effectively covers a RI scale of 1.28 to 1.42 for analytes, showcasing its versatility in simultaneous detection. Taking into account the RI change at the outer surface, attractive sensing implementations such as optimal wavelength sensitivity of 97,000 nm/RIU and optimal amplitude sensitivity of 529.20 RIU−1 are attained. Furthermore, with a resolution of 9.09 × 10−6 RIU, a figure in merit of 170 RIU−1, an FWHM of 570 nm, and a detection accuracy of 0.0166 nm−1, the suggested sensor is impressive. This suggested sensor finds application in monitoring sucrose solutions across a spectrum ranging from 0% to 45% chemical concentration over time. It has an ideal amplitude sensitivity of 530.95 RIU−1 and an ideal wavelength sensitivity of 10,000 nm/RIU for sucrose solutions at the 40% concentration level. Furthermore, the sensor shows an ideal wavelength sensitivity of 35,000 nm/RIU and an ideal amplitude sensitivity of 793.80 RIU−1 for the detection of 2-propanol. Nevertheless, beyond sucrose noticing auspicious sensing qualities by the suggested sensor its feasibility for impact fully identifying a range of biochemical and organic samples. As a result, the proposed sensor holds promise as an exemplary choice the realms in biomedical sensing, the detection of lower RI analyses as well as chemical analysis. Streamlining practical application, the sensor's structure incorporates eight elliptical air holes, uncomplicated readily manufactural with existing technologies.
期刊介绍:
Sensing and Bio-Sensing Research is an open access journal dedicated to the research, design, development, and application of bio-sensing and sensing technologies. The editors will accept research papers, reviews, field trials, and validation studies that are of significant relevance. These submissions should describe new concepts, enhance understanding of the field, or offer insights into the practical application, manufacturing, and commercialization of bio-sensing and sensing technologies.
The journal covers a wide range of topics, including sensing principles and mechanisms, new materials development for transducers and recognition components, fabrication technology, and various types of sensors such as optical, electrochemical, mass-sensitive, gas, biosensors, and more. It also includes environmental, process control, and biomedical applications, signal processing, chemometrics, optoelectronic, mechanical, thermal, and magnetic sensors, as well as interface electronics. Additionally, it covers sensor systems and applications, µTAS (Micro Total Analysis Systems), development of solid-state devices for transducing physical signals, and analytical devices incorporating biological materials.