Classification of brain tumor using deep learning at early stage

Q4 Engineering Measurement Sensors Pub Date : 2024-08-15 DOI:10.1016/j.measen.2024.101295
P.S. Smitha, G. Balaarunesh, C. Sruthi Nath, Aminta Sabatini S
{"title":"Classification of brain tumor using deep learning at early stage","authors":"P.S. Smitha,&nbsp;G. Balaarunesh,&nbsp;C. Sruthi Nath,&nbsp;Aminta Sabatini S","doi":"10.1016/j.measen.2024.101295","DOIUrl":null,"url":null,"abstract":"<div><p>Early detection and classification of brain tumors are crucial for patient survival. This study proposes a comprehensive deep learning approach for early brain tumor classification using medical imaging data. A diverse dataset encompassing various tumor types, stages, and healthy brain images is utilized. Preprocessing techniques like augmentation and normalization enhance data robustness. A convolutional neural network (CNN) architecture serves as the primary model, leveraging transfer learning from pre-trained models to extract relevant features even with limited data. The training process optimizes hyperparameters to prevent overfitting, and performance is evaluated using metrics like accuracy, precision, recall, F1 score, confusion matrices, and ROC curves on a separate test set. Focusing on early detection, the model explores predicting tumor growth trajectories and identifying subtle pre-tumor patterns, aligning with expert diagnoses and boosting real-world applicability. Ethical and regulatory guidelines are adhered to in data handling. Continuous improvement involves updating the model with new data and monitoring its clinical performance. This research contributes to advancing early tumor classification methods, potentially improving patient outcomes and treatment strategies.</p></div>","PeriodicalId":34311,"journal":{"name":"Measurement Sensors","volume":"35 ","pages":"Article 101295"},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266591742400271X/pdfft?md5=929ac12d03164a03ac2027a69f6b0393&pid=1-s2.0-S266591742400271X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Measurement Sensors","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266591742400271X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Early detection and classification of brain tumors are crucial for patient survival. This study proposes a comprehensive deep learning approach for early brain tumor classification using medical imaging data. A diverse dataset encompassing various tumor types, stages, and healthy brain images is utilized. Preprocessing techniques like augmentation and normalization enhance data robustness. A convolutional neural network (CNN) architecture serves as the primary model, leveraging transfer learning from pre-trained models to extract relevant features even with limited data. The training process optimizes hyperparameters to prevent overfitting, and performance is evaluated using metrics like accuracy, precision, recall, F1 score, confusion matrices, and ROC curves on a separate test set. Focusing on early detection, the model explores predicting tumor growth trajectories and identifying subtle pre-tumor patterns, aligning with expert diagnoses and boosting real-world applicability. Ethical and regulatory guidelines are adhered to in data handling. Continuous improvement involves updating the model with new data and monitoring its clinical performance. This research contributes to advancing early tumor classification methods, potentially improving patient outcomes and treatment strategies.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
早期利用深度学习对脑肿瘤进行分类
脑肿瘤的早期检测和分类对患者的生存至关重要。本研究提出了一种利用医学影像数据进行早期脑肿瘤分类的综合深度学习方法。研究利用了一个包含各种肿瘤类型、分期和健康脑部图像的多样化数据集。增强和归一化等预处理技术增强了数据的鲁棒性。卷积神经网络(CNN)架构作为主要模型,利用预训练模型的迁移学习,即使在数据有限的情况下也能提取相关特征。训练过程优化了超参数,以防止过度拟合,并使用准确率、精确度、召回率、F1 分数、混淆矩阵和单独测试集上的 ROC 曲线等指标对性能进行评估。该模型以早期检测为重点,探索预测肿瘤生长轨迹和识别微妙的肿瘤前模式,与专家诊断保持一致,提高了现实世界的适用性。数据处理遵守道德和法规准则。持续改进包括利用新数据更新模型并监测其临床表现。这项研究有助于推进早期肿瘤分类方法,从而改善患者预后和治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Measurement Sensors
Measurement Sensors Engineering-Industrial and Manufacturing Engineering
CiteScore
3.10
自引率
0.00%
发文量
184
审稿时长
56 days
期刊最新文献
Augmented and virtual reality based segmentation algorithm for human pose detection in wearable cameras Exploring EEG-Based biomarkers for improved early Alzheimer's disease detection: A feature-based approach utilizing machine learning Deep learning model for smart wearables device to detect human health conduction Review and analysis on numerical simulation and compact modeling of InGaZno thin-film transistor for display SENSOR applications Artificial intelligence and IoT driven system architecture for municipality waste management in smart cities: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1