{"title":"Spectroscopic and computational characterization of lanthanide-mediated bond activation of ethylamine","authors":"Silver Nyambo, Yuchen Zhang, Dong-Sheng Yang","doi":"10.1016/j.jorganchem.2024.123330","DOIUrl":null,"url":null,"abstract":"<div><p>Ln (Ln = La and Ce) atom reactions with ethylamine are conducted in a pulsed laser vaporization supersonic molecular beam source. Dehydrogenation and association metal-containing species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln ethylimido species in the formula Ln(NC<sub>2</sub>H<sub>5</sub>) are characterized by single-photon mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and a scalar relativity correction, electron correlation, and spin-orbit coupling through multiconfiguration quasi-degenerate second-order perturbation theory for the Ce species. The MATI spectrum of lanthanum ethylimido La(NCH<sub>2</sub>CH<sub>3</sub>) has a single vibronic band system from the ionization of the doublet ground state with the La 6s<sup>1</sup> configuration, whereas that of the cerium ethylimido Ce(NCH<sub>2</sub>CH<sub>3</sub>) displays two vibronic band system from the ionization of the two lowest-energy spin-orbit coupling states with the Ce 4f<sup>1</sup>6s<sup>1</sup> configuration. Both Ln ethylimido complexes are formed by the thermodynamically and kinetically favorable concerted dehydrogenation of the amino group. Two additional isomers of Ln(NC<sub>2</sub>H<sub>5</sub>) include a four-membered metallacycle Ln(NHCH<sub>2</sub>CH<sub>2</sub>) from the dehydrogenation of the amino and methyl groups and a three-membered cycle Ln(NHCHCH<sub>3</sub>) from the dehydrogenation of the amino and methylene groups. The cyclic isomers are not observed experimentally as they are not populated under the experimental conditions.</p></div>","PeriodicalId":374,"journal":{"name":"Journal of Organometallic Chemistry","volume":"1020 ","pages":"Article 123330"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022328X24003255","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Ln (Ln = La and Ce) atom reactions with ethylamine are conducted in a pulsed laser vaporization supersonic molecular beam source. Dehydrogenation and association metal-containing species are observed with time-of-flight mass spectrometry, and the dehydrogenated Ln ethylimido species in the formula Ln(NC2H5) are characterized by single-photon mass-analyzed threshold ionization (MATI) spectroscopy and quantum chemical calculations. The theoretical calculations include density functional theory for both Ln species and a scalar relativity correction, electron correlation, and spin-orbit coupling through multiconfiguration quasi-degenerate second-order perturbation theory for the Ce species. The MATI spectrum of lanthanum ethylimido La(NCH2CH3) has a single vibronic band system from the ionization of the doublet ground state with the La 6s1 configuration, whereas that of the cerium ethylimido Ce(NCH2CH3) displays two vibronic band system from the ionization of the two lowest-energy spin-orbit coupling states with the Ce 4f16s1 configuration. Both Ln ethylimido complexes are formed by the thermodynamically and kinetically favorable concerted dehydrogenation of the amino group. Two additional isomers of Ln(NC2H5) include a four-membered metallacycle Ln(NHCH2CH2) from the dehydrogenation of the amino and methyl groups and a three-membered cycle Ln(NHCHCH3) from the dehydrogenation of the amino and methylene groups. The cyclic isomers are not observed experimentally as they are not populated under the experimental conditions.
期刊介绍:
The Journal of Organometallic Chemistry targets original papers dealing with theoretical aspects, structural chemistry, synthesis, physical and chemical properties (including reaction mechanisms), and practical applications of organometallic compounds.
Organometallic compounds are defined as compounds that contain metal - carbon bonds. The term metal includes all alkali and alkaline earth metals, all transition metals and the lanthanides and actinides in the Periodic Table. Metalloids including the elements in Group 13 and the heavier members of the Groups 14 - 16 are also included. The term chemistry includes syntheses, characterizations and reaction chemistry of all such compounds. Research reports based on use of organometallic complexes in bioorganometallic chemistry, medicine, material sciences, homogeneous catalysis and energy conversion are also welcome.
The scope of the journal has been enlarged to encompass important research on organometallic complexes in bioorganometallic chemistry and material sciences, and of heavier main group elements in organometallic chemistry. The journal also publishes review articles, short communications and notes.