{"title":"A conjugate method for simulating the dynamics of stochastic urban spatial network models","authors":"","doi":"10.1016/j.chaos.2024.115430","DOIUrl":null,"url":null,"abstract":"<div><p>Urban networks are integral components of urban systems, contributing to their functioning and shaping the overall dynamics of urban areas. They are characterized by their complexity, interdependence, and dynamic nature. The construction, analysis and understanding of urban network models is therefore essential to address complex urban challenges, fostering sustainable development, and improving the overall quality of life in systems like cities and regions. In this work, we present and analyze the properties of a stochastic spatial-interaction model of urban structures. In addition, we devise a suitable time-stepping integrator that allows analyzing the evolution of this stochastic system at large times intervals, providing information of the dynamical behavior of the system in its equilibrium state. Numerical simulation studies are carried out to illustrate the practical effectiveness of the proposed approach.</p></div>","PeriodicalId":9764,"journal":{"name":"Chaos Solitons & Fractals","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chaos Solitons & Fractals","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960077924009822","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Urban networks are integral components of urban systems, contributing to their functioning and shaping the overall dynamics of urban areas. They are characterized by their complexity, interdependence, and dynamic nature. The construction, analysis and understanding of urban network models is therefore essential to address complex urban challenges, fostering sustainable development, and improving the overall quality of life in systems like cities and regions. In this work, we present and analyze the properties of a stochastic spatial-interaction model of urban structures. In addition, we devise a suitable time-stepping integrator that allows analyzing the evolution of this stochastic system at large times intervals, providing information of the dynamical behavior of the system in its equilibrium state. Numerical simulation studies are carried out to illustrate the practical effectiveness of the proposed approach.
期刊介绍:
Chaos, Solitons & Fractals strives to establish itself as a premier journal in the interdisciplinary realm of Nonlinear Science, Non-equilibrium, and Complex Phenomena. It welcomes submissions covering a broad spectrum of topics within this field, including dynamics, non-equilibrium processes in physics, chemistry, and geophysics, complex matter and networks, mathematical models, computational biology, applications to quantum and mesoscopic phenomena, fluctuations and random processes, self-organization, and social phenomena.