{"title":"Dimension reduction for Quasi-Monte Carlo methods via quadratic regression","authors":"Junichi Imai , Ken Seng Tan","doi":"10.1016/j.matcom.2024.08.016","DOIUrl":null,"url":null,"abstract":"<div><p>Quasi-Monte Carlo (QMC) methods have been gaining popularity in computational finance as they are competitive alternatives to Monte Carlo methods that can accelerate numerical accuracy. This paper develops a new approach for reducing the effective dimension combined with a randomized QMC method. A distinctive feature of the proposed approach is its sample-based transformation that enables us to choose a flexible manipulation via regression. In the proposed approach, the first step is to perform a regression using the samples to estimate the parameters of the regression model. An optimal transformation is proposed based on the regression result to minimize the effective dimension. An advantage of this approach is that adopting a statistical approach allows greater flexibility in selecting the regression model. In addition to a linear model, this paper proposes a dimension reduction method based on a linear-quadratic model for regression. In numerical experiments, we focus on pricing different types of exotic options to test the effectiveness of the proposed approach. The numerical results show that different regression models are chosen depending on the underlying risk process and the type of derivative securities. In particular, we show several examples where the proposed method works while existing dimension reductions are ineffective.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 371-390"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378475424003185/pdfft?md5=faa81dfc482a8f8a1e66a2e0a08e568e&pid=1-s2.0-S0378475424003185-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003185","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Quasi-Monte Carlo (QMC) methods have been gaining popularity in computational finance as they are competitive alternatives to Monte Carlo methods that can accelerate numerical accuracy. This paper develops a new approach for reducing the effective dimension combined with a randomized QMC method. A distinctive feature of the proposed approach is its sample-based transformation that enables us to choose a flexible manipulation via regression. In the proposed approach, the first step is to perform a regression using the samples to estimate the parameters of the regression model. An optimal transformation is proposed based on the regression result to minimize the effective dimension. An advantage of this approach is that adopting a statistical approach allows greater flexibility in selecting the regression model. In addition to a linear model, this paper proposes a dimension reduction method based on a linear-quadratic model for regression. In numerical experiments, we focus on pricing different types of exotic options to test the effectiveness of the proposed approach. The numerical results show that different regression models are chosen depending on the underlying risk process and the type of derivative securities. In particular, we show several examples where the proposed method works while existing dimension reductions are ineffective.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.