Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review

IF 15.7 1区 化学 Q1 CHEMISTRY, APPLIED Chinese Journal of Catalysis Pub Date : 2024-08-01 DOI:10.1016/S1872-2067(24)60076-8
Zhipeng Li , Xiaobin Liu , Qingping Yu , Xinyue Qu , Jun Wan , Zhenyu Xiao , Jingqi Chi , Lei Wang
{"title":"Recent advances in design of hydrogen evolution reaction electrocatalysts at high current density: A review","authors":"Zhipeng Li ,&nbsp;Xiaobin Liu ,&nbsp;Qingping Yu ,&nbsp;Xinyue Qu ,&nbsp;Jun Wan ,&nbsp;Zhenyu Xiao ,&nbsp;Jingqi Chi ,&nbsp;Lei Wang","doi":"10.1016/S1872-2067(24)60076-8","DOIUrl":null,"url":null,"abstract":"<div><p>The electrolysis of water powered by renewable energy sources offers a promising method of “green hydrogen” production, which is considered to be at the heart of future carbon-neutral energy systems. In the past decades, researchers have reported a number of hydrogen evolution reaction (HER) electrocatalysts with activity comparable to that of commercial Pt/C, but most of them are tested within a small current density range, typically no more than 500 mA cm<sup>–2</sup>. To realize the industrial application of hydrogen production from water electrolysis, it is essential to develop high-efficiency HER electrocatalysts at high current density (HCD ≥ 500 mA cm<sup>–2</sup>). Nevertheless, it remains challenging and significant to rational design HCD electrocatalysts for HER. In this paper, the design strategy of HCD electrocatalysts is discussed, and some HCD electrocatalysts for HER are reviewed in seven categories (alloy, metal oxide, metal hydroxide, metal sulfide/selenide, metal nitride, metal phosphide and other derived electrocatalysts). At the end of this article, we also propose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.</p></div>","PeriodicalId":9832,"journal":{"name":"Chinese Journal of Catalysis","volume":"63 ","pages":"Pages 33-60"},"PeriodicalIF":15.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Catalysis","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1872206724600768","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The electrolysis of water powered by renewable energy sources offers a promising method of “green hydrogen” production, which is considered to be at the heart of future carbon-neutral energy systems. In the past decades, researchers have reported a number of hydrogen evolution reaction (HER) electrocatalysts with activity comparable to that of commercial Pt/C, but most of them are tested within a small current density range, typically no more than 500 mA cm–2. To realize the industrial application of hydrogen production from water electrolysis, it is essential to develop high-efficiency HER electrocatalysts at high current density (HCD ≥ 500 mA cm–2). Nevertheless, it remains challenging and significant to rational design HCD electrocatalysts for HER. In this paper, the design strategy of HCD electrocatalysts is discussed, and some HCD electrocatalysts for HER are reviewed in seven categories (alloy, metal oxide, metal hydroxide, metal sulfide/selenide, metal nitride, metal phosphide and other derived electrocatalysts). At the end of this article, we also propose some viewpoints and prospects for the future development and research directions of HCD electrocatalysts for HER.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高电流密度氢进化反应电催化剂设计的最新进展:综述
以可再生能源为动力的水电解是一种前景广阔的 "绿色氢 "生产方法,被认为是未来碳中和能源系统的核心。在过去的几十年中,研究人员报道了许多氢进化反应(HER)电催化剂,其活性可与商用铂/钯相媲美,但大多数催化剂都是在较小的电流密度范围内进行测试,通常不超过 500 mA cm-2。要实现电解水制氢的工业应用,就必须开发高电流密度(HCD ≥ 500 mA cm-2)的高效 HER 电催化剂。然而,为 HER 合理设计 HCD 电催化剂仍然具有挑战性和重要性。本文讨论了 HCD 电催化剂的设计策略,并从七大类(合金、金属氧化物、金属氢氧化物、金属硫化物/硒化物、金属氮化物、金属磷化物和其他衍生电催化剂)综述了一些用于 HER 的 HCD 电催化剂。文章最后,我们还对 HCD HER 电催化剂的未来发展和研究方向提出了一些观点和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chinese Journal of Catalysis
Chinese Journal of Catalysis 工程技术-工程:化工
CiteScore
25.80
自引率
10.30%
发文量
235
审稿时长
1.2 months
期刊介绍: The journal covers a broad scope, encompassing new trends in catalysis for applications in energy production, environmental protection, and the preparation of materials, petroleum chemicals, and fine chemicals. It explores the scientific foundation for preparing and activating catalysts of commercial interest, emphasizing representative models.The focus includes spectroscopic methods for structural characterization, especially in situ techniques, as well as new theoretical methods with practical impact in catalysis and catalytic reactions.The journal delves into the relationship between homogeneous and heterogeneous catalysis and includes theoretical studies on the structure and reactivity of catalysts.Additionally, contributions on photocatalysis, biocatalysis, surface science, and catalysis-related chemical kinetics are welcomed.
期刊最新文献
Structural regulation strategies of nitrogen reduction electrocatalysts Anode design principles for efficient seawater electrolysis and inhibition of chloride oxidation Solar-driven H2O2 synthesis from H2O and O2 over molecular engineered organic framework photocatalysts Research progress of anionic vacancies in electrocatalysts for oxygen evolution reaction Enhanced electrochemical carbon dioxide reduction in membrane electrode assemblies with acidic electrolytes through a silicate buffer layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1