A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions.

IF 3.6 3区 生物学 Q1 PLANT SCIENCES Planta Pub Date : 2024-08-25 DOI:10.1007/s00425-024-04510-2
Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig
{"title":"A novel Microbacterium strain SRS2 promotes the growth of Arabidopsis and MicroTom (S. lycopersicum) under normal and salt stress conditions.","authors":"Ho Manh Tuong, Sonia García Méndez, Michiel Vandecasteele, Anne Willems, Anelia Iancheva, Pham Bich Ngoc, Do Tien Phat, Chu Hoang Ha, Sofie Goormachtig","doi":"10.1007/s00425-024-04510-2","DOIUrl":null,"url":null,"abstract":"<p><strong>Main conclusion: </strong>Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.</p>","PeriodicalId":20177,"journal":{"name":"Planta","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Planta","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00425-024-04510-2","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Main conclusion: Microbacterium strain SRS2 promotes growth and induces salt stress resistance in Arabidopsis and MicroTom in various growth substrates via the induction of the ABA pathway. Soil salinity reduces plant growth and development and thereby decreases the value and productivity of soils. Plant growth-promoting rhizobacteria (PGPR) have been shown to support plant growth such as in salt stress conditions. Here, Microbacterium strain SRS2, isolated from the root endosphere of tomato, was tested for its capability to help plants cope with salt stress. In a salt tolerance assay, SRS2 grew well up to medium levels of NaCl, but the growth was inhibited at high salt concentrations. SRS2 inoculation led to increased biomass of Arabidopsis and MicroTom tomato in various growth substrates, in the presence and in the absence of high NaCl concentrations. Whole-genome analysis revealed that the strain contains several genes involved in osmoregulation and reactive oxygen species (ROS) scavenging, which could potentially explain the observed growth promotion. Additionally, we also investigated via qRT-PCR, promoter::GUS and mutant analyses whether the abscisic acid (ABA)-dependent or -independent pathways for tolerance against salt stress were involved in the model plant, Arabidopsis. Especially in salt stress conditions, the plant growth-promotion effect of SRS2 was lost in aba1, abi4-102, abi3, and abi5-1 mutant lines. Furthermore, ABA genes related to salt stress in SRS2-inoculated plants were transiently upregulated compared to mock under salt stress conditions. Additionally, SRS2-inoculated ABI4::GUS and ABI5::GUS plants were slightly more activated compared to the uninoculated control under salt stress conditions. Together, these assays show that SRS2 promotes growth in normal and in salt stress conditions, the latter possibly via the induction of ABA-dependent and -independent pathways.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在正常和盐胁迫条件下,新型微细菌菌株 SRS2 可促进拟南芥和番茄微囊藻(S. lycopersicum)的生长。
主要结论微细菌菌株 SRS2 通过诱导 ABA 途径,促进拟南芥和微型瘤在各种生长基质中的生长并诱导其抗盐胁迫能力。土壤盐分会降低植物的生长和发育,从而降低土壤的价值和生产力。植物生长促进根瘤菌(PGPR)已被证明能在盐胁迫等条件下支持植物生长。在此,我们测试了从番茄根部内膜分离出来的微细菌菌株 SRS2 帮助植物应对盐胁迫的能力。在耐盐性试验中,SRS2 在中等浓度的 NaCl 下生长良好,但在高浓度盐下生长受到抑制。在各种生长基质中,无论是有还是没有高浓度 NaCl 的情况下,接种 SRS2 都能增加拟南芥和 MicroTom 番茄的生物量。全基因组分析表明,该菌株含有多个参与渗透调节和活性氧(ROS)清除的基因,这可能是观察到的生长促进作用的潜在原因。此外,我们还通过 qRT-PCR、启动子::GUS 和突变体分析,研究了拟南芥中依赖或不依赖脱落酸(ABA)的耐盐胁迫途径。特别是在盐胁迫条件下,SRS2对植物生长的促进作用在aba1、abi4-102、abi3和abi5-1突变株系中消失。此外,在盐胁迫条件下,SRS2 接种植株中与盐胁迫相关的 ABA 基因比模拟植株瞬时上调。此外,在盐胁迫条件下,SRS2 接种的 ABI4::GUS 和 ABI5::GUS 植株比未接种的对照植株活化程度略高。这些检测结果表明,SRS2 在正常和盐胁迫条件下都能促进生长,后者可能是通过诱导依赖 ABA 和不依赖 ABA 的途径实现的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Planta
Planta 生物-植物科学
CiteScore
7.20
自引率
2.30%
发文量
217
审稿时长
2.3 months
期刊介绍: Planta publishes timely and substantial articles on all aspects of plant biology. We welcome original research papers on any plant species. Areas of interest include biochemistry, bioenergy, biotechnology, cell biology, development, ecological and environmental physiology, growth, metabolism, morphogenesis, molecular biology, new methods, physiology, plant-microbe interactions, structural biology, and systems biology.
期刊最新文献
Biotechnological approaches to reduce the phytic acid content in millets to improve nutritional quality Deciphering the evolutionary development of the “Chinese lantern” within Solanaceae The dominant white color trait of the melon fruit rind is associated with epicuticular wax accumulation Effects of calcium ions and cell wall deposition on the pollen viability of Paeonia lactiflora after cryopreservation Bio-control of soil-borne virus infection by seed application of Glycyrrhiza glabra extract and the rhamnolipid Rhapynal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1