{"title":"Recent technical advances in cellular cryo-electron tomography","authors":"Tianyu Zheng , Shujun Cai","doi":"10.1016/j.biocel.2024.106648","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.</p></div>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1357272524001407","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Understanding the in situ structure, organization, and interactions of macromolecules is essential for elucidating their functions and mechanisms of action. Cellular cryo-electron tomography (cryo-ET) is a cutting-edge technique that reveals in situ molecular-resolution architectures of macromolecules in their lifelike states. It also provides insights into the three-dimensional distribution of macromolecules and their spatial relationships with various subcellular structures. Thus, cellular cryo-ET bridges the gap between structural biology and cell biology. With rapid advancements, this technique achieved substantial improvements in throughput, automation, and resolution. This review presents the fundamental principles and methodologies of cellular cryo-ET, highlighting recent developments in sample preparation, data collection, and image processing. We also discuss emerging trends and potential future directions. As cellular cryo-ET continues to develop, it is set to play an increasingly vital role in structural cell biology.