Shichang Wang , Binbin Fan , Zhongtao Huang , Zongxiu Bai , Rongguang Zhu , Lingfeng Meng
{"title":"Development and application of a low-cost and portable multi-channel spectral detection system for mutton adulteration","authors":"Shichang Wang , Binbin Fan , Zhongtao Huang , Zongxiu Bai , Rongguang Zhu , Lingfeng Meng","doi":"10.1016/j.biosystemseng.2024.08.015","DOIUrl":null,"url":null,"abstract":"<div><p>It is important to develop low-cost, fast and portable meat adulteration detection systems to ensure the meat authenticity and safety in complex market environments. A multi-channel spectral detection system for meat adulteration was developed in this study. The core hardware of the system mainly includes a designed spectral module and a Raspberry pi controller. The spectral module consists of three multi-channel spectral sensors and LED lamps with specific wavelengths, containing 18 channels covering a range of 410–940 nm. The software was developed based on PyQt5. After completing the construction of the system, the detection distance was discussed and determined to be 4 mm. Based on the spectral data collected by the developed system, the models for classifying pure mutton, pure pork, mutton flavour essence adulteration, colourant adulteration and adulterated mutton with pork were established and compared. Four intelligent optimisation algorithms were further used to improve the model performance. The results of the test set showed that the support vector classification (SVC) model optimised by a sparrow search algorithm (SSA) obtained the best classification performance, with an accuracy of 97.59% and a Kappa coefficient of 0.9696. After the SSA-SVC was incorporated into the sensor software, the system performance was evaluated using external validation samples. The overall accuracy of the system was 94.29%. The system took about 5.31 s to detect a sample, and the total weight of the system was 1.55 kg. Overall, the developed portable spectral system has considerable potential to rapidly and accurately discriminate adulterated mutton in the field.</p></div>","PeriodicalId":9173,"journal":{"name":"Biosystems Engineering","volume":"247 ","pages":"Pages 13-25"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosystems Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1537511024001934","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURAL ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
It is important to develop low-cost, fast and portable meat adulteration detection systems to ensure the meat authenticity and safety in complex market environments. A multi-channel spectral detection system for meat adulteration was developed in this study. The core hardware of the system mainly includes a designed spectral module and a Raspberry pi controller. The spectral module consists of three multi-channel spectral sensors and LED lamps with specific wavelengths, containing 18 channels covering a range of 410–940 nm. The software was developed based on PyQt5. After completing the construction of the system, the detection distance was discussed and determined to be 4 mm. Based on the spectral data collected by the developed system, the models for classifying pure mutton, pure pork, mutton flavour essence adulteration, colourant adulteration and adulterated mutton with pork were established and compared. Four intelligent optimisation algorithms were further used to improve the model performance. The results of the test set showed that the support vector classification (SVC) model optimised by a sparrow search algorithm (SSA) obtained the best classification performance, with an accuracy of 97.59% and a Kappa coefficient of 0.9696. After the SSA-SVC was incorporated into the sensor software, the system performance was evaluated using external validation samples. The overall accuracy of the system was 94.29%. The system took about 5.31 s to detect a sample, and the total weight of the system was 1.55 kg. Overall, the developed portable spectral system has considerable potential to rapidly and accurately discriminate adulterated mutton in the field.
期刊介绍:
Biosystems Engineering publishes research in engineering and the physical sciences that represent advances in understanding or modelling of the performance of biological systems for sustainable developments in land use and the environment, agriculture and amenity, bioproduction processes and the food chain. The subject matter of the journal reflects the wide range and interdisciplinary nature of research in engineering for biological systems.