{"title":"Revealing the mechanisms of water permeability enhancement of urban loess subgrades due to vibration application","authors":"","doi":"10.1016/j.trgeo.2024.101346","DOIUrl":null,"url":null,"abstract":"<div><p>Urban loess subgrades are affected by considerable vibrations from traffic, especially when the underground pipelines leak, and seepage under vibrations often causes road damage. However, the influence of vibrations on the water permeability of loess subgrades remains elusive. Here we address this issue by performing vibration-assisted permeability tests and scanning electron microscopy, mercury intrusion porosimetry, and suction–nuclear magnetic resonance measurements. This allowed the evolution of the saturated hydraulic conductivity (<em>K</em><sub>s</sub>), water-air migration, soil microstructure, and pore water forms to be evaluated. The water permeability of the loess subgrade is promoted by vibrations due to the increase in <em>K</em><sub>s</sub>, the acceleration of wet front migration, and the escape of entrapped air. Moreover, the value of <em>K</em><sub>s</sub> under vibration is 3–14 times greater than that without vibration, and the maximum increase occurs at a vibration frequency near the natural frequency of the loess. Furthermore, a theoretical framework of loess vibration permeability is proposed, and the mechanisms by which vibration accelerates the permeability behavior of the loess subgrade are revealed. Vibration promotes the expansion of soil pores, a decrease in the binding capacity of pore water, the mobilization of fine particles, and the formation of local low-permeability layer. Moreover, it accelerates the opening of entrapped air bubbles and the displacement of water-air, the reduction in seepage resistance. Thus, seepage water flows rapidly along infiltration channels. These findings are highly important for the road safety performance and the sustainable development of the traffic environment in loess regions.</p></div>","PeriodicalId":56013,"journal":{"name":"Transportation Geotechnics","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Geotechnics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214391224001673","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Urban loess subgrades are affected by considerable vibrations from traffic, especially when the underground pipelines leak, and seepage under vibrations often causes road damage. However, the influence of vibrations on the water permeability of loess subgrades remains elusive. Here we address this issue by performing vibration-assisted permeability tests and scanning electron microscopy, mercury intrusion porosimetry, and suction–nuclear magnetic resonance measurements. This allowed the evolution of the saturated hydraulic conductivity (Ks), water-air migration, soil microstructure, and pore water forms to be evaluated. The water permeability of the loess subgrade is promoted by vibrations due to the increase in Ks, the acceleration of wet front migration, and the escape of entrapped air. Moreover, the value of Ks under vibration is 3–14 times greater than that without vibration, and the maximum increase occurs at a vibration frequency near the natural frequency of the loess. Furthermore, a theoretical framework of loess vibration permeability is proposed, and the mechanisms by which vibration accelerates the permeability behavior of the loess subgrade are revealed. Vibration promotes the expansion of soil pores, a decrease in the binding capacity of pore water, the mobilization of fine particles, and the formation of local low-permeability layer. Moreover, it accelerates the opening of entrapped air bubbles and the displacement of water-air, the reduction in seepage resistance. Thus, seepage water flows rapidly along infiltration channels. These findings are highly important for the road safety performance and the sustainable development of the traffic environment in loess regions.
期刊介绍:
Transportation Geotechnics is a journal dedicated to publishing high-quality, theoretical, and applied papers that cover all facets of geotechnics for transportation infrastructure such as roads, highways, railways, underground railways, airfields, and waterways. The journal places a special emphasis on case studies that present original work relevant to the sustainable construction of transportation infrastructure. The scope of topics it addresses includes the geotechnical properties of geomaterials for sustainable and rational design and construction, the behavior of compacted and stabilized geomaterials, the use of geosynthetics and reinforcement in constructed layers and interlayers, ground improvement and slope stability for transportation infrastructures, compaction technology and management, maintenance technology, the impact of climate, embankments for highways and high-speed trains, transition zones, dredging, underwater geotechnics for infrastructure purposes, and the modeling of multi-layered structures and supporting ground under dynamic and repeated loads.