Kevin Jeanne Dit Fouque, Juan Camilo Molano-Arevalo, Fenfei Leng, Francisco Fernandez-Lima
{"title":"Conformational and Structural Characterization of Knotted Proteins.","authors":"Kevin Jeanne Dit Fouque, Juan Camilo Molano-Arevalo, Fenfei Leng, Francisco Fernandez-Lima","doi":"10.1021/acs.biochem.4c00218","DOIUrl":null,"url":null,"abstract":"<p><p>Knotted proteins are fascinating natural biomolecules whose backbones entangle themselves in a knot. Their particular knotted configurations provide them with a wide range of topological features. However, their folding/unfolding mechanisms, stability, and function are poorly understood. In the present work, native trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used for characterizing structural features of two model knotted proteins: a Gordian 5<sub>2</sub> knot ubiquitin C-terminal hydrolase (UCH) and a Stevedore 6<sub>1</sub> knot (α-haloacid dehalogenase, DehI). Experimental results showed structural transitions of UCH and DehI as a function of solution composition (0-50% MeOH) and temperature (<i>T</i> ∼20-95 °C). An increase in the protein charge states and collision cross sections (∼2750-8750 Å<sup>2</sup> and ∼3250-15,385 Å<sup>2</sup> for UCH and DehI, respectively) with the solution organic content (OC) and temperature suggested a three-step unfolding pathway with at least four structural transitions. Results also showed that the integrity of the UCH knot core was more resistant to thermal unfolding when compared to DehI; however, both knot cores can be disrupted with the increase in the solution OC. Additional enzymatic digestion experiments using carboxypeptidase Y combined with molecular dynamics simulations showed that the knot core was preserved between Glu20 and Glu188 and Arg89 and His304 residues for UCH and DehI, respectively, where disruption of the knot core led to structural collapse followed by unfolding events. This work highlights the potential of solution OC and temperature studies combined with native TIMS-MS for the comprehensive characterization of knotted proteins to gain a better understanding of their structural transitions.</p>","PeriodicalId":28,"journal":{"name":"Biochemistry Biochemistry","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemistry Biochemistry","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.biochem.4c00218","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Knotted proteins are fascinating natural biomolecules whose backbones entangle themselves in a knot. Their particular knotted configurations provide them with a wide range of topological features. However, their folding/unfolding mechanisms, stability, and function are poorly understood. In the present work, native trapped ion mobility spectrometry-mass spectrometry (TIMS-MS) was used for characterizing structural features of two model knotted proteins: a Gordian 52 knot ubiquitin C-terminal hydrolase (UCH) and a Stevedore 61 knot (α-haloacid dehalogenase, DehI). Experimental results showed structural transitions of UCH and DehI as a function of solution composition (0-50% MeOH) and temperature (T ∼20-95 °C). An increase in the protein charge states and collision cross sections (∼2750-8750 Å2 and ∼3250-15,385 Å2 for UCH and DehI, respectively) with the solution organic content (OC) and temperature suggested a three-step unfolding pathway with at least four structural transitions. Results also showed that the integrity of the UCH knot core was more resistant to thermal unfolding when compared to DehI; however, both knot cores can be disrupted with the increase in the solution OC. Additional enzymatic digestion experiments using carboxypeptidase Y combined with molecular dynamics simulations showed that the knot core was preserved between Glu20 and Glu188 and Arg89 and His304 residues for UCH and DehI, respectively, where disruption of the knot core led to structural collapse followed by unfolding events. This work highlights the potential of solution OC and temperature studies combined with native TIMS-MS for the comprehensive characterization of knotted proteins to gain a better understanding of their structural transitions.
期刊介绍:
Biochemistry provides an international forum for publishing exceptional, rigorous, high-impact research across all of biological chemistry. This broad scope includes studies on the chemical, physical, mechanistic, and/or structural basis of biological or cell function, and encompasses the fields of chemical biology, synthetic biology, disease biology, cell biology, nucleic acid biology, neuroscience, structural biology, and biophysics. In addition to traditional Research Articles, Biochemistry also publishes Communications, Viewpoints, and Perspectives, as well as From the Bench articles that report new methods of particular interest to the biological chemistry community.