AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua.

IF 10.1 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Plant Biotechnology Journal Pub Date : 2024-08-27 DOI:10.1111/pbi.14449
Mingyuan Yuan, Yinguo Sheng, Jingjing Bao, Wenkai Wu, Guibin Nie, Lingjian Wang, Junfeng Cao
{"title":"AaMYC3 bridges the regulation of glandular trichome density and artemisinin biosynthesis in Artemisia annua.","authors":"Mingyuan Yuan, Yinguo Sheng, Jingjing Bao, Wenkai Wu, Guibin Nie, Lingjian Wang, Junfeng Cao","doi":"10.1111/pbi.14449","DOIUrl":null,"url":null,"abstract":"<p><p>Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.</p>","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":" ","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.14449","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Artemisinin, the well-known natural product for treating malaria, is biosynthesised and stored in the glandular-secreting trichomes (GSTs) of Artemisia annua. While numerous efforts have clarified artemisinin metabolism and regulation, the molecular association between artemisinin biosynthesis and GST development remains elusive. Here, we identified AaMYC3, a bHLH transcription factor of A. annua, induced by jasmonic acid (JA), which simultaneously regulates GST density and artemisinin biosynthesis. Overexpressing AaMYC3 led to a substantial increase in GST density and artemisinin accumulation. Conversely, in the RNAi-AaMYC3 lines, both GST density and artemisinin content were markedly reduced. Through RNA-seq and analyses conducted both in vivo and in vitro, AaMYC3 not only directly activates AaHD1 transcription, initiating GST development, but also up-regulates the expression of artemisinin biosynthetic genes, including CYP71AV1 and ALDH1, thereby promoting artemisinin production. Furthermore, AaMYC3 acts as a co-activator, interacting with AabHLH1 and AabHLH113, to trigger the transcription of two crucial enzymes in the artemisinin biosynthesis pathway, ADS and DBR2, ultimately boosting yield. Our findings highlight a critical connection between GST initiation and artemisinin biosynthesis in A. annua, providing a new target for molecular design breeding of traditional Chinese medicine.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
AaMYC3 是调控黄花蒿腺毛密度和青蒿素生物合成的桥梁。
青蒿素是众所周知的治疗疟疾的天然产物,它是在黄花蒿的腺分泌毛状体(GST)中生物合成和储存的。尽管许多研究已阐明了青蒿素的代谢和调控,但青蒿素的生物合成与 GST 的发育之间的分子关联仍然难以捉摸。在这里,我们发现了 AaMYC3,它是青蒿的一种 bHLH 转录因子,由茉莉酸(JA)诱导,同时调节 GST 密度和青蒿素的生物合成。过量表达 AaMYC3 会导致 GST 密度和青蒿素积累大幅增加。相反,在 RNAi-AaMYC3 株系中,GST 密度和青蒿素含量都明显降低。通过体内和体外的 RNA-seq 和分析,AaMYC3 不仅能直接激活 AaHD1 的转录,启动 GST 的发育,还能上调青蒿素生物合成基因(包括 CYP71AV1 和 ALDH1)的表达,从而促进青蒿素的产生。此外,AaMYC3 作为共激活因子,与 AabHLH1 和 AabHLH113 相互作用,触发青蒿素生物合成途径中两个关键酶 ADS 和 DBR2 的转录,最终提高产量。我们的研究结果突显了 GST 启动与青蒿素生物合成之间的关键联系,为中药分子设计育种提供了一个新靶标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Plant Biotechnology Journal
Plant Biotechnology Journal 生物-生物工程与应用微生物
CiteScore
20.50
自引率
2.90%
发文量
201
审稿时长
1 months
期刊介绍: Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.
期刊最新文献
Creation of high-resistant starch rice through systematic editing of amylopectin biosynthetic genes in rs4. Plant-produced SARS-CoV-2 antibody engineered towards enhanced potency and in vivo efficacy Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. Increasing thermostability of the key photorespiratory enzyme glycerate 3-kinase by structure-based recombination Genetic improvement of eating and cooking quality of rice cultivars in southern China
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1