Efficacy Evaluation of Treatment of Psoriasis Via Narrow Band-Ultraviolet Radiation.

IF 1.4 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Journal of lasers in medical sciences Pub Date : 2024-07-27 eCollection Date: 2024-01-01 DOI:10.34172/jlms.2024.26
Mohammad Rostami Nejad, Reza M Robati, Zahra Razzaghi, Babak Arjmand, Fatemeh Montazer, Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei Tavirani
{"title":"Efficacy Evaluation of Treatment of Psoriasis Via Narrow Band-Ultraviolet Radiation.","authors":"Mohammad Rostami Nejad, Reza M Robati, Zahra Razzaghi, Babak Arjmand, Fatemeh Montazer, Fatemeh Bandarian, Farideh Razi, Mostafa Rezaei Tavirani","doi":"10.34172/jlms.2024.26","DOIUrl":null,"url":null,"abstract":"<p><p><b>Introduction:</b> Psoriasis is a common autoimmune skin disease associated with genetically influenced chronic inflammation accompanied by remitting and deteriorating scaly skin. T-cell targeted biologics, IL-17 inhibitors, IL-12/IL-23 inhibitors, TNF-α inhibitors, PDE4 inhibitors, and ultraviolet (UV) radiation are applied to treat psoriasis. Efficacy evaluation of narrow band UVB (NB-UVB) radiation was the aim of this study. <b>Methods:</b> Data were extracted from Gene Expression Omnibus (GEO) and were pre-evaluated via the GEO2R program. The significant differentially expressed genes (DEGs) were included in the protein-protein interaction (PPI) network analysis. The hubs, bottlenecks, and hub-bottleneck DEGs were introduced as central genes. Activation, inhibition, and expression relationship between central genes were assessed to explore the critical individuals. <b>Results:</b> Among 513 analyzed significant DEGs, 22 hub-bottleneck genes were identified. Further analysis revealed that FN1, STAT3, HIF1A, IL1B, P4HB, SOD2, MMP2, and STAT1 were the crucial genes in psoriasis samples targeted by NB-UVB radiation. <b>Conclusion:</b> In conclusion, NB-UVB radiation as a treatment targets critical genes in peri-lesion skin tissue biopsy of psoriasis patients via a complicated mechanism. This therapeutic method downregulates STAT3, HIF1A, IL1B, and P4HB to treat psoriasis but downregulates STAT1 and SOD2 and upregulates MMP2 and FN1 to develop disease.</p>","PeriodicalId":16224,"journal":{"name":"Journal of lasers in medical sciences","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11345797/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of lasers in medical sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/jlms.2024.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Psoriasis is a common autoimmune skin disease associated with genetically influenced chronic inflammation accompanied by remitting and deteriorating scaly skin. T-cell targeted biologics, IL-17 inhibitors, IL-12/IL-23 inhibitors, TNF-α inhibitors, PDE4 inhibitors, and ultraviolet (UV) radiation are applied to treat psoriasis. Efficacy evaluation of narrow band UVB (NB-UVB) radiation was the aim of this study. Methods: Data were extracted from Gene Expression Omnibus (GEO) and were pre-evaluated via the GEO2R program. The significant differentially expressed genes (DEGs) were included in the protein-protein interaction (PPI) network analysis. The hubs, bottlenecks, and hub-bottleneck DEGs were introduced as central genes. Activation, inhibition, and expression relationship between central genes were assessed to explore the critical individuals. Results: Among 513 analyzed significant DEGs, 22 hub-bottleneck genes were identified. Further analysis revealed that FN1, STAT3, HIF1A, IL1B, P4HB, SOD2, MMP2, and STAT1 were the crucial genes in psoriasis samples targeted by NB-UVB radiation. Conclusion: In conclusion, NB-UVB radiation as a treatment targets critical genes in peri-lesion skin tissue biopsy of psoriasis patients via a complicated mechanism. This therapeutic method downregulates STAT3, HIF1A, IL1B, and P4HB to treat psoriasis but downregulates STAT1 and SOD2 and upregulates MMP2 and FN1 to develop disease.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过窄带紫外线辐射治疗银屑病的疗效评估。
简介银屑病是一种常见的自身免疫性皮肤病,与受基因影响的慢性炎症有关,伴有缓解和恶化的鳞屑性皮肤。T细胞靶向生物制剂、IL-17抑制剂、IL-12/IL-23抑制剂、TNF-α抑制剂、PDE4抑制剂和紫外线(UV)辐射被用于治疗银屑病。本研究旨在评估窄带紫外线(NB-UVB)辐射的疗效。研究方法从基因表达总库(GEO)中提取数据,并通过 GEO2R 程序进行预评估。重要的差异表达基因(DEG)被纳入蛋白质-蛋白质相互作用(PPI)网络分析。中心基因、瓶颈基因和中心-瓶颈 DEGs 被引入中心基因。评估了中心基因之间的激活、抑制和表达关系,以探索关键个体。结果在分析的 513 个重要 DEGs 中,发现了 22 个中枢-瓶颈基因。进一步分析发现,FN1、STAT3、HIF1A、IL1B、P4HB、SOD2、MMP2 和 STAT1 是 NB-UVB 辐射靶向银屑病样本中的关键基因。结论总之,NB-UVB 辐射通过复杂的机制靶向银屑病患者皮损周围皮肤组织活检中的关键基因。这种治疗方法会下调 STAT3、HIF1A、IL1B 和 P4HB,从而治疗银屑病,但会下调 STAT1 和 SOD2,上调 MMP2 和 FN1,从而诱发疾病。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of lasers in medical sciences
Journal of lasers in medical sciences RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
3.00
自引率
13.30%
发文量
24
期刊介绍: The "Journal of Lasers in Medical Sciences " is a scientific quarterly publication of the Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences. This journal received a scientific and research rank from the national medical publication committee. This Journal accepts original papers, review articles, case reports, brief reports, case series, photo assays, letters to the editor, and commentaries in the field of laser, or light in any fields of medicine such as the following medical specialties: -Dermatology -General and Vascular Surgery -Oncology -Cardiology -Dentistry -Urology -Rehabilitation -Ophthalmology -Otorhinolaryngology -Gynecology & Obstetrics -Internal Medicine -Orthopedics -Neurosurgery -Radiology -Pain Medicine (Algology) -Basic Sciences (Stem cell, Cellular and Molecular application and physic)
期刊最新文献
Effects of Photobiomodulation Using Low-Power Diode Laser Therapy and Nano-bone on Mandibular Bone Regeneration in Rats. Comparison of the Effects of Gluma Gel, Sensodyne Repair and Protect Toothpaste, and an 810 nm Low Power Diode Laser on the Closure of Dentinal Tubules: An In Vitro Study. Photobiomodulation Improves Histological Parameters of Testis and Spermatogenesis in Adult Mice Exposed to Scrotal Hyperthermia in the Prepubertal Phase. Enhanced Therapeutic Efficacy of Gold Nanoparticle-Enhanced Laser Therapy for Oral Cancer: A Promising Photothermal Approach. Molecular Mechanism Analysis of Intensive Light-Induced Retinal Damages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1