{"title":"Optimal splitk-plot designs","authors":"Mathias Born , Peter Goos","doi":"10.1016/j.csda.2024.108028","DOIUrl":null,"url":null,"abstract":"<div><p>Completely randomized designs are often infeasible due to the hard-to-change nature of one or more experimental factors. In those cases, restrictions are imposed on the order of the experimental tests. The resulting experimental designs are often split-plot or split-split-plot designs in which the levels of certain hard-to-change factors are varied only a limited number of times. In agricultural machinery optimization, the number of hard-to-change factors is so large and the available time for experimentation is so short that split-plot or split-split-plot designs are infeasible as well. The only feasible kinds of designs are generalizations of split-split-plot designs, which are referred to as split<sup><em>k</em></sup>-designs, where <em>k</em> is larger than 2. The coordinate-exchange algorithm is extended to construct optimal split<sup><em>k</em></sup>-plot designs and the added value of the algorithm is demonstrated by applying it to an experiment involving a self propelled forage harvester. The optimal design generated using the extended algorithm is substantially more efficient than the design that was actually used. Update formulas for the determinant and the inverse of the information matrix speed up the coordinate-exchange algorithm, making it feasible for large designs.</p></div>","PeriodicalId":55225,"journal":{"name":"Computational Statistics & Data Analysis","volume":"201 ","pages":"Article 108028"},"PeriodicalIF":1.5000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0167947324001129/pdfft?md5=a6856543c46f3f3fa3089527fd43efb7&pid=1-s2.0-S0167947324001129-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Statistics & Data Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167947324001129","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Completely randomized designs are often infeasible due to the hard-to-change nature of one or more experimental factors. In those cases, restrictions are imposed on the order of the experimental tests. The resulting experimental designs are often split-plot or split-split-plot designs in which the levels of certain hard-to-change factors are varied only a limited number of times. In agricultural machinery optimization, the number of hard-to-change factors is so large and the available time for experimentation is so short that split-plot or split-split-plot designs are infeasible as well. The only feasible kinds of designs are generalizations of split-split-plot designs, which are referred to as splitk-designs, where k is larger than 2. The coordinate-exchange algorithm is extended to construct optimal splitk-plot designs and the added value of the algorithm is demonstrated by applying it to an experiment involving a self propelled forage harvester. The optimal design generated using the extended algorithm is substantially more efficient than the design that was actually used. Update formulas for the determinant and the inverse of the information matrix speed up the coordinate-exchange algorithm, making it feasible for large designs.
期刊介绍:
Computational Statistics and Data Analysis (CSDA), an Official Publication of the network Computational and Methodological Statistics (CMStatistics) and of the International Association for Statistical Computing (IASC), is an international journal dedicated to the dissemination of methodological research and applications in the areas of computational statistics and data analysis. The journal consists of four refereed sections which are divided into the following subject areas:
I) Computational Statistics - Manuscripts dealing with: 1) the explicit impact of computers on statistical methodology (e.g., Bayesian computing, bioinformatics,computer graphics, computer intensive inferential methods, data exploration, data mining, expert systems, heuristics, knowledge based systems, machine learning, neural networks, numerical and optimization methods, parallel computing, statistical databases, statistical systems), and 2) the development, evaluation and validation of statistical software and algorithms. Software and algorithms can be submitted with manuscripts and will be stored together with the online article.
II) Statistical Methodology for Data Analysis - Manuscripts dealing with novel and original data analytical strategies and methodologies applied in biostatistics (design and analytic methods for clinical trials, epidemiological studies, statistical genetics, or genetic/environmental interactions), chemometrics, classification, data exploration, density estimation, design of experiments, environmetrics, education, image analysis, marketing, model free data exploration, pattern recognition, psychometrics, statistical physics, image processing, robust procedures.
[...]
III) Special Applications - [...]
IV) Annals of Statistical Data Science [...]