Convergence analysis of a novel high order networks model based on entropy error function

IF 4.4 2区 数学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Mathematics and Computers in Simulation Pub Date : 2024-08-21 DOI:10.1016/j.matcom.2024.08.014
Qianru Huang , Qinwei Fan , Zhiwei Xing , Xiaofei Yang , Xingshi He
{"title":"Convergence analysis of a novel high order networks model based on entropy error function","authors":"Qianru Huang ,&nbsp;Qinwei Fan ,&nbsp;Zhiwei Xing ,&nbsp;Xiaofei Yang ,&nbsp;Xingshi He","doi":"10.1016/j.matcom.2024.08.014","DOIUrl":null,"url":null,"abstract":"<div><p>It is generally known that the error function is one of the key factors that determine the convergence, stability and generalization ability of neural networks. For most feedforward neural networks, the squared error function is usually chosen as the error function to train the network. However, networks based on the squared error function can lead to slow convergence and easily fall into local optimum in the actual training process. Recent studies have found that, compared to the squared error function, the gradient method based on the entropy error function measures the difference between the probability distribution of the model output and the probability distribution of the true labels during the iterative process, which can be more able to handle the uncertainty in the classification problem, less likely to fall into a local optimum and can learn to converge more rapidly. In this paper, we propose a batch gradient method for Sigma-Pi-Sigma neural networks based on the entropy error function and rigorously demonstrate the weak and strong convergence of the new algorithm in the batch input mode. Finally, the theoretical results and effectiveness of the algorithm are verified by simulation.</p></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"227 ","pages":"Pages 405-419"},"PeriodicalIF":4.4000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424003161","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

It is generally known that the error function is one of the key factors that determine the convergence, stability and generalization ability of neural networks. For most feedforward neural networks, the squared error function is usually chosen as the error function to train the network. However, networks based on the squared error function can lead to slow convergence and easily fall into local optimum in the actual training process. Recent studies have found that, compared to the squared error function, the gradient method based on the entropy error function measures the difference between the probability distribution of the model output and the probability distribution of the true labels during the iterative process, which can be more able to handle the uncertainty in the classification problem, less likely to fall into a local optimum and can learn to converge more rapidly. In this paper, we propose a batch gradient method for Sigma-Pi-Sigma neural networks based on the entropy error function and rigorously demonstrate the weak and strong convergence of the new algorithm in the batch input mode. Finally, the theoretical results and effectiveness of the algorithm are verified by simulation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于熵误差函数的新型高阶网络模型收敛性分析
众所周知,误差函数是决定神经网络收敛性、稳定性和泛化能力的关键因素之一。对于大多数前馈神经网络,通常选择平方误差函数作为训练网络的误差函数。然而,基于平方误差函数的网络会导致收敛速度缓慢,在实际训练过程中容易陷入局部最优。最新研究发现,与平方误差函数相比,基于熵误差函数的梯度法在迭代过程中测量模型输出的概率分布与真实标签的概率分布之间的差异,更能处理分类问题中的不确定性,不易陷入局部最优,学习收敛速度更快。本文提出了一种基于熵误差函数的 Sigma-Pi-Sigma 神经网络批量梯度法,并严格证明了新算法在批量输入模式下的弱收敛性和强收敛性。最后,通过仿真验证了算法的理论结果和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Mathematics and Computers in Simulation
Mathematics and Computers in Simulation 数学-计算机:跨学科应用
CiteScore
8.90
自引率
4.30%
发文量
335
审稿时长
54 days
期刊介绍: The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles. Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO. Topics covered by the journal include mathematical tools in: •The foundations of systems modelling •Numerical analysis and the development of algorithms for simulation They also include considerations about computer hardware for simulation and about special software and compilers. The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research. The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.
期刊最新文献
An innovative fractional grey system model and its application Large time solution for collisional breakage model: Laplace transformation based accelerated homotopy perturbation method Efficient second-order accurate exponential time differencing for time-fractional advection–diffusion–reaction equations with variable coefficients Multi-objective optimization of the appendages of a sailing yacht using the Normal Boundary Intersection method Dynamic analysis and data-driven inference of a fractional-order SEIHDR epidemic model with variable parameters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1