HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations.

IF 2.9 3区 生物学 Q2 BIOCHEMICAL RESEARCH METHODS BMC Bioinformatics Pub Date : 2024-08-27 DOI:10.1186/s12859-024-05776-9
Ravikiran Donthu, Jose A P Marcelino, Rosanna Giordano, Yudong Tao, Everett Weber, Arian Avalos, Mark Band, Tatsiana Akraiko, Shu-Ching Chen, Maria P Reyes, Haiping Hao, Yarira Ortiz-Alvarado, Charles A Cuff, Eddie Pérez Claudio, Felipe Soto-Adames, Allan H Smith-Pardo, William G Meikle, Jay D Evans, Tugrul Giray, Faten B Abdelkader, Mike Allsopp, Daniel Ball, Susana B Morgado, Shalva Barjadze, Adriana Correa-Benitez, Amina Chakir, David R Báez, Nabor H M Chavez, Anne Dalmon, Adrian B Douglas, Carmen Fraccica, Hermógenes Fernández-Marín, Alberto Galindo-Cardona, Ernesto Guzman-Novoa, Robert Horsburgh, Meral Kence, Joseph Kilonzo, Mert Kükrer, Yves Le Conte, Gaetana Mazzeo, Fernando Mota, Elliud Muli, Devrim Oskay, José A Ruiz-Martínez, Eugenia Oliveri, Igor Pichkhaia, Abderrahmane Romane, Cesar Guillen Sanchez, Evans Sikombwa, Alberto Satta, Alejandra A Scannapieco, Brandi Stanford, Victoria Soroker, Rodrigo A Velarde, Monica Vercelli, Zachary Huang
{"title":"HBeeID: a molecular tool that identifies honey bee subspecies from different geographic populations.","authors":"Ravikiran Donthu, Jose A P Marcelino, Rosanna Giordano, Yudong Tao, Everett Weber, Arian Avalos, Mark Band, Tatsiana Akraiko, Shu-Ching Chen, Maria P Reyes, Haiping Hao, Yarira Ortiz-Alvarado, Charles A Cuff, Eddie Pérez Claudio, Felipe Soto-Adames, Allan H Smith-Pardo, William G Meikle, Jay D Evans, Tugrul Giray, Faten B Abdelkader, Mike Allsopp, Daniel Ball, Susana B Morgado, Shalva Barjadze, Adriana Correa-Benitez, Amina Chakir, David R Báez, Nabor H M Chavez, Anne Dalmon, Adrian B Douglas, Carmen Fraccica, Hermógenes Fernández-Marín, Alberto Galindo-Cardona, Ernesto Guzman-Novoa, Robert Horsburgh, Meral Kence, Joseph Kilonzo, Mert Kükrer, Yves Le Conte, Gaetana Mazzeo, Fernando Mota, Elliud Muli, Devrim Oskay, José A Ruiz-Martínez, Eugenia Oliveri, Igor Pichkhaia, Abderrahmane Romane, Cesar Guillen Sanchez, Evans Sikombwa, Alberto Satta, Alejandra A Scannapieco, Brandi Stanford, Victoria Soroker, Rodrigo A Velarde, Monica Vercelli, Zachary Huang","doi":"10.1186/s12859-024-05776-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.</p><p><strong>Results: </strong>We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.</p><p><strong>Conclusion: </strong>HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.</p>","PeriodicalId":8958,"journal":{"name":"BMC Bioinformatics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11348773/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12859-024-05776-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Honey bees are the principal commercial pollinators. Along with other arthropods, they are increasingly under threat from anthropogenic factors such as the incursion of invasive honey bee subspecies, pathogens and parasites. Better tools are needed to identify bee subspecies. Genomic data for economic and ecologically important organisms is increasing, but in its basic form its practical application to address ecological problems is limited.

Results: We introduce HBeeID a means to identify honey bees. The tool utilizes a knowledge-based network and diagnostic SNPs identified by discriminant analysis of principle components and hierarchical agglomerative clustering. Tests of HBeeID showed that it identifies African, Americas-Africanized, Asian, and European honey bees with a high degree of certainty even when samples lack the full 272 SNPs of HBeeID. Its prediction capacity decreases with highly admixed samples.

Conclusion: HBeeID is a high-resolution genomic, SNP based tool, that can be used to identify honey bees and screen species that are invasive. Its flexible design allows for future improvements via sample data additions from other localities.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
HBeeID:一种从不同地理种群中识别蜜蜂亚种的分子工具。
背景:蜜蜂是主要的商业授粉者。与其他节肢动物一样,蜜蜂正日益受到人为因素的威胁,如外来蜜蜂亚种、病原体和寄生虫的入侵。需要更好的工具来识别蜜蜂亚种。经济和生态重要生物的基因组数据正在不断增加,但以其基本形式实际应用于解决生态问题却很有限:结果:我们介绍了一种识别蜜蜂的方法--HBeeID。该工具利用基于知识的网络和通过原理成分判别分析和分层聚类确定的诊断 SNPs。对 HBeeID 的测试表明,即使样本中缺乏 HBeeID 的全部 272 个 SNPs,它也能高度准确地识别非洲、美洲-非洲化、亚洲和欧洲蜜蜂。结论:HBeeID 是一种基于 SNP 的高分辨率基因组工具,可用于识别蜜蜂和筛选入侵物种。其灵活的设计允许未来通过添加其他地区的样本数据进行改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
BMC Bioinformatics
BMC Bioinformatics 生物-生化研究方法
CiteScore
5.70
自引率
3.30%
发文量
506
审稿时长
4.3 months
期刊介绍: BMC Bioinformatics is an open access, peer-reviewed journal that considers articles on all aspects of the development, testing and novel application of computational and statistical methods for the modeling and analysis of all kinds of biological data, as well as other areas of computational biology. BMC Bioinformatics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.
期刊最新文献
Rare copy number variant analysis in case-control studies using snp array data: a scalable and automated data analysis pipeline. Mining contextually meaningful subgraphs from a vertex-attributed graph. Robust double machine learning model with application to omics data. A mapping-free natural language processing-based technique for sequence search in nanopore long-reads. Closha 2.0: a bio-workflow design system for massive genome data analysis on high performance cluster infrastructure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1