Tong Lu, Linna Guo, Yong Ma, Lijie Yao, Li Li, Wenshan Bian, Miao Xiu, Yang Jiang, Yongtao Li, Haifeng Jin
{"title":"Identification and Analysis of Differentially Expressed Genes Associated with Ferroptosis and HIV in PASMCs Based on Bioinformatics.","authors":"Tong Lu, Linna Guo, Yong Ma, Lijie Yao, Li Li, Wenshan Bian, Miao Xiu, Yang Jiang, Yongtao Li, Haifeng Jin","doi":"10.2174/011570162X304876240821062047","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>HIV-associated pulmonary arterial hypertension (HIV-PAH), a rare and fatal condition within the pulmonary arterial hypertension spectrum, is linked to HIV infection. While ferroptosis, an iron-dependent cell death form, is implicated in various lung diseases, its role in HIVPAH development remains unclear.</p><p><strong>Methods: </strong>Leveraging Gene Expression Omnibus data, we identified differentially expressed genes (DEGs) in pulmonary arterial smooth muscle cells, including HIV-related DEGs (HIV-DEGs) and ferroptosis-related HIV-DEGs (FR-HIV-DEGs). PPI network analysis of FR-HIV-DEGs using CytoHubba in Cytoscape identified hub genes. We conducted functional and pathway enrichment analyses for FR-HIV-DEGs, HIV-DEGs, and hub genes. Diagnostic value assessment of hub genes utilized ROC curve analysis. Key genes were further screened, and external validation was performed. Additionally, we predicted a potential ceRNA regulatory network for key genes.</p><p><strong>Results: </strong>1372 DEGs were found, of which 228 were HIV-DEGs, and 20 were FR-HIV-DEGs. TP53, IL6, PTGS2, IL1B (downregulated), and PPARG (upregulated) were the five hub genes that were screened. TP53, IL6, and IL1B act as ferroptosis drivers, PTGS2 as a ferroptosis marker, and PPARG as a ferroptosis inhibitor. Enrichment analysis indicated biological processes enriched in \"response to oxidative stress\" and pathways enriched in \"human cytomegalovirus infection.\" Key genes IL6 and PTGS2 exhibited strong predictive value <i>via</i> ROC curve analysis and external validation. The predicted ceRNA regulatory network identified miRNAs (has-mir-335-5p, has-mir-124-3p) targeting key genes and lncRNAs (XIST, NEAT1) targeting these miRNAs.</p><p><strong>Conclusion: </strong>This study advances our understanding of potential mechanisms in HIV-PAH pathogenesis, emphasizing the involvement of ferroptosis. The findings offer valuable insights for future research in HIV-PAH.</p>","PeriodicalId":10911,"journal":{"name":"Current HIV Research","volume":" ","pages":"308-317"},"PeriodicalIF":0.8000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current HIV Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/011570162X304876240821062047","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: HIV-associated pulmonary arterial hypertension (HIV-PAH), a rare and fatal condition within the pulmonary arterial hypertension spectrum, is linked to HIV infection. While ferroptosis, an iron-dependent cell death form, is implicated in various lung diseases, its role in HIVPAH development remains unclear.
Methods: Leveraging Gene Expression Omnibus data, we identified differentially expressed genes (DEGs) in pulmonary arterial smooth muscle cells, including HIV-related DEGs (HIV-DEGs) and ferroptosis-related HIV-DEGs (FR-HIV-DEGs). PPI network analysis of FR-HIV-DEGs using CytoHubba in Cytoscape identified hub genes. We conducted functional and pathway enrichment analyses for FR-HIV-DEGs, HIV-DEGs, and hub genes. Diagnostic value assessment of hub genes utilized ROC curve analysis. Key genes were further screened, and external validation was performed. Additionally, we predicted a potential ceRNA regulatory network for key genes.
Results: 1372 DEGs were found, of which 228 were HIV-DEGs, and 20 were FR-HIV-DEGs. TP53, IL6, PTGS2, IL1B (downregulated), and PPARG (upregulated) were the five hub genes that were screened. TP53, IL6, and IL1B act as ferroptosis drivers, PTGS2 as a ferroptosis marker, and PPARG as a ferroptosis inhibitor. Enrichment analysis indicated biological processes enriched in "response to oxidative stress" and pathways enriched in "human cytomegalovirus infection." Key genes IL6 and PTGS2 exhibited strong predictive value via ROC curve analysis and external validation. The predicted ceRNA regulatory network identified miRNAs (has-mir-335-5p, has-mir-124-3p) targeting key genes and lncRNAs (XIST, NEAT1) targeting these miRNAs.
Conclusion: This study advances our understanding of potential mechanisms in HIV-PAH pathogenesis, emphasizing the involvement of ferroptosis. The findings offer valuable insights for future research in HIV-PAH.
期刊介绍:
Current HIV Research covers all the latest and outstanding developments of HIV research by publishing original research, review articles and guest edited thematic issues. The novel pioneering work in the basic and clinical fields on all areas of HIV research covers: virus replication and gene expression, HIV assembly, virus-cell interaction, viral pathogenesis, epidemiology and transmission, anti-retroviral therapy and adherence, drug discovery, the latest developments in HIV/AIDS vaccines and animal models, mechanisms and interactions with AIDS related diseases, social and public health issues related to HIV disease, and prevention of viral infection. Periodically, the journal invites guest editors to devote an issue on a particular area of HIV research of great interest that increases our understanding of the virus and its complex interaction with the host.