Md Abdullah Al Mamun, Tomas Katkus, Anita Mahadevan-Jansen, Saulius Juodkazis, Paul R Stoddart
{"title":"Optical Fiber Probe with Integrated Micro-Optical Filter for Raman and Surface-Enhanced Raman Scattering Sensing.","authors":"Md Abdullah Al Mamun, Tomas Katkus, Anita Mahadevan-Jansen, Saulius Juodkazis, Paul R Stoddart","doi":"10.3390/nano14161345","DOIUrl":null,"url":null,"abstract":"<p><p>Optical fiber Raman and surface-enhanced Raman scattering (SERS) probes hold great promise for in vivo biosensing and in situ monitoring of hostile environments. However, the silica Raman scattering background generated within the optical fiber increases in proportion to the length of the fiber, and it can swamp the signal from the target analyte. While filtering can be applied at the distal end of the fiber, the use of bulk optical elements has limited probe miniaturization to a diameter of 600 µm, which in turn limits the potential applications. To overcome this limitation, femtosecond laser micromachining was used to fabricate a prototype micro-optical filter, which was directly integrated on the tip of a 125 µm diameter double-clad fiber (DCF) probe. The outer surface of the microfilter was further modified with a nanostructured, SERS-active, plasmonic film that was used to demonstrate proof-of-concept performance with thiophenol as a test analyte. With further optimization of the associated spectroscopic system, this ultra-compact microprobe shows great promise for Raman and SERS optical fiber sensing.</p>","PeriodicalId":18966,"journal":{"name":"Nanomaterials","volume":null,"pages":null},"PeriodicalIF":4.4000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11357131/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/nano14161345","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Optical fiber Raman and surface-enhanced Raman scattering (SERS) probes hold great promise for in vivo biosensing and in situ monitoring of hostile environments. However, the silica Raman scattering background generated within the optical fiber increases in proportion to the length of the fiber, and it can swamp the signal from the target analyte. While filtering can be applied at the distal end of the fiber, the use of bulk optical elements has limited probe miniaturization to a diameter of 600 µm, which in turn limits the potential applications. To overcome this limitation, femtosecond laser micromachining was used to fabricate a prototype micro-optical filter, which was directly integrated on the tip of a 125 µm diameter double-clad fiber (DCF) probe. The outer surface of the microfilter was further modified with a nanostructured, SERS-active, plasmonic film that was used to demonstrate proof-of-concept performance with thiophenol as a test analyte. With further optimization of the associated spectroscopic system, this ultra-compact microprobe shows great promise for Raman and SERS optical fiber sensing.
期刊介绍:
Nanomaterials (ISSN 2076-4991) is an international and interdisciplinary scholarly open access journal. It publishes reviews, regular research papers, communications, and short notes that are relevant to any field of study that involves nanomaterials, with respect to their science and application. Thus, theoretical and experimental articles will be accepted, along with articles that deal with the synthesis and use of nanomaterials. Articles that synthesize information from multiple fields, and which place discoveries within a broader context, will be preferred. There is no restriction on the length of the papers. Our aim is to encourage scientists to publish their experimental and theoretical research in as much detail as possible. Full experimental or methodical details, or both, must be provided for research articles. Computed data or files regarding the full details of the experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. Nanomaterials is dedicated to a high scientific standard. All manuscripts undergo a rigorous reviewing process and decisions are based on the recommendations of independent reviewers.