Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications.

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2024-08-13 DOI:10.3390/bios14080391
Ruier Xue, Fei Deng, Tianruo Guo, Alexander Epps, Nigel H Lovell, Mohit N Shivdasani
{"title":"Needle-Shaped Biosensors for Precision Diagnoses: From Benchtop Development to In Vitro and In Vivo Applications.","authors":"Ruier Xue, Fei Deng, Tianruo Guo, Alexander Epps, Nigel H Lovell, Mohit N Shivdasani","doi":"10.3390/bios14080391","DOIUrl":null,"url":null,"abstract":"<p><p>To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":null,"pages":null},"PeriodicalIF":4.9000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11353061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14080391","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve the accurate recognition of biomarkers or pathological characteristics within tissues or cells, in situ detection using biosensor technology offers crucial insights into the nature, stage, and progression of diseases, paving the way for enhanced precision in diagnostic approaches and treatment strategies. The implementation of needle-shaped biosensors (N-biosensors) presents a highly promising method for conducting in situ measurements of clinical biomarkers in various organs, such as in the brain or spinal cord. Previous studies have highlighted the excellent performance of different N-biosensor designs in detecting biomarkers from clinical samples in vitro. Recent preclinical in vivo studies have also shown significant progress in the clinical translation of N-biosensor technology for in situ biomarker detection, enabling highly accurate diagnoses for cancer, diabetes, and infectious diseases. This article begins with an overview of current state-of-the-art benchtop N-biosensor designs, discusses their preclinical applications for sensitive diagnoses, and concludes by exploring the challenges and potential avenues for next-generation N-biosensor technology.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于精确诊断的针形生物传感器:从台式开发到体外和体内应用。
为了准确识别组织或细胞内的生物标志物或病理特征,利用生物传感器技术进行原位检测,可以深入了解疾病的性质、阶段和进展,为提高诊断方法和治疗策略的精确性铺平道路。针形生物传感器(N-生物传感器)的应用为在大脑或脊髓等各种器官中原位测量临床生物标记物提供了一种极具前景的方法。以往的研究表明,不同的 N 型生物传感器设计在体外检测临床样本中的生物标记物方面表现出色。最近的临床前体内研究也表明,N-生物传感器技术在原位生物标记物检测的临床转化方面取得了重大进展,使癌症、糖尿病和传染病的高精度诊断成为可能。本文首先概述了当前最先进的台式 N-biosensor 设计,讨论了它们在灵敏诊断方面的临床前应用,最后探讨了下一代 N-biosensor 技术面临的挑战和潜在的发展途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
Ru@UiO-66-NH2 MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine. Source Localization and Classification of Pulmonary Valve-Originated Electrocardiograms Using Volume Conductor Modeling with Anatomical Models. Prediction of Thrombus Formation within an Oxygenator via Bioimpedance Analysis. Electrochemical Analysis of Amyloid Plaques and ApoE4 with Chitosan-Coated Gold Nanostars for Alzheimer's Detection. Enhancing Target Detection: A Fluorescence-Based Streptavidin-Bead Displacement Assay.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1