{"title":"Ru@UiO-66-NH<sub>2</sub> MOFs-Based Dual Emission Ratiometric Fluorescence for Sensitive Sensing of Arginine.","authors":"Jiawen Fan, Junjie Qi, Jingkun Li, Fuwei Pi","doi":"10.3390/bios14100512","DOIUrl":null,"url":null,"abstract":"<p><p>Arginine has been widely applied in the food industry as coloring agents, flavoring agents, and nutritional fortifiers. It is also one of the major components of feed additives. Currently, methods for the highly selective detection of arginine remain absent. For accurate and sensitive detection of L-arginine, a novel ratiometric fluorescence assay based on Ru@UiO-66-NH<sub>2</sub> was developed and demonstrated in this study. Under optimized detection conditions, the limit of detection (LOD) of this assay for L-arginine was 2.32 μM, which is superior to most assays reported to date. Meanwhile, Ru@UiO-66-NH<sub>2</sub> showed good stability within 30 days, demonstrating the wide applicability of the proposed assay. The spike-and-recovery rates of the proposed assay for L-arginine in real samples (e.g., tea, grape juice, and serum) were 84.27-113.09%. Overall, the proposed assay showed high sensitivity, good reproducibility, and excellent stability in the detection of L-arginine in both buffer and real samples.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"14 10","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11505678/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios14100512","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Arginine has been widely applied in the food industry as coloring agents, flavoring agents, and nutritional fortifiers. It is also one of the major components of feed additives. Currently, methods for the highly selective detection of arginine remain absent. For accurate and sensitive detection of L-arginine, a novel ratiometric fluorescence assay based on Ru@UiO-66-NH2 was developed and demonstrated in this study. Under optimized detection conditions, the limit of detection (LOD) of this assay for L-arginine was 2.32 μM, which is superior to most assays reported to date. Meanwhile, Ru@UiO-66-NH2 showed good stability within 30 days, demonstrating the wide applicability of the proposed assay. The spike-and-recovery rates of the proposed assay for L-arginine in real samples (e.g., tea, grape juice, and serum) were 84.27-113.09%. Overall, the proposed assay showed high sensitivity, good reproducibility, and excellent stability in the detection of L-arginine in both buffer and real samples.
Biosensors-BaselBiochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍:
Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.