Jia Xie, Zhao-Ning Lu, Shi-Hao Bai, Xiao-Fang Cui, He-Yuan Lian, Chen-Yi Xie, Na Wang, Lan Wang, Ze-Guang Han
{"title":"Heterochromatin formation and remodeling by IRTKS condensates counteract cellular senescence.","authors":"Jia Xie, Zhao-Ning Lu, Shi-Hao Bai, Xiao-Fang Cui, He-Yuan Lian, Chen-Yi Xie, Na Wang, Lan Wang, Ze-Guang Han","doi":"10.1038/s44318-024-00212-3","DOIUrl":null,"url":null,"abstract":"<p><p>Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.</p>","PeriodicalId":50533,"journal":{"name":"EMBO Journal","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11480336/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMBO Journal","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s44318-024-00212-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/8/27 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Heterochromatin, a key component of the eukaryotic nucleus, is fundamental to the regulation of genome stability, gene expression and cellular functions. However, the factors and mechanisms involved in heterochromatin formation and maintenance still remain largely unknown. Here, we show that insulin receptor tyrosine kinase substrate (IRTKS), an I-BAR domain protein, is indispensable for constitutive heterochromatin formation via liquid‒liquid phase separation (LLPS). In particular, IRTKS droplets can infiltrate heterochromatin condensates composed of HP1α and diverse DNA-bound nucleosomes. IRTKS can stabilize HP1α by recruiting the E2 ligase Ubc9 to SUMOylate HP1α, which enables it to form larger phase-separated droplets than unmodified HP1α. Furthermore, IRTKS deficiency leads to loss of heterochromatin, resulting in genome-wide changes in chromatin accessibility and aberrant transcription of repetitive DNA elements. This leads to activation of cGAS-STING pathway and type-I interferon (IFN-I) signaling, as well as to the induction of cellular senescence and senescence-associated secretory phenotype (SASP) responses. Collectively, our findings establish a mechanism by which IRTKS condensates consolidate constitutive heterochromatin, revealing an unexpected role of IRTKS as an epigenetic mediator of cellular senescence.
异染色质是真核生物细胞核的重要组成部分,是调控基因组稳定性、基因表达和细胞功能的基础。然而,异染色质的形成和维持所涉及的因素和机制在很大程度上仍然未知。在这里,我们通过液-液相分离(LLPS)研究发现,胰岛素受体酪氨酸激酶底物(IRTKS)--一种I-BAR结构域蛋白--对于组成型异染色质的形成是不可或缺的。特别是,IRTKS液滴可以渗入由HP1α和多种DNA结合核小体组成的异染色质凝聚体。IRTKS可以通过招募E2连接酶Ubc9对HP1α进行SUMO化来稳定HP1α,从而使其形成比未修饰的HP1α更大的相分离液滴。此外,IRTKS 的缺乏会导致异染色质的缺失,导致染色质可及性的全基因组变化和重复 DNA 元素的异常转录。这导致 cGAS-STING 通路和 I 型干扰素(IFN-I)信号的激活,以及细胞衰老和衰老相关分泌表型(SASP)反应的诱导。总之,我们的研究结果建立了一种IRTKS凝集物巩固组成型异染色质的机制,揭示了IRTKS作为细胞衰老的表观遗传介质所起的意想不到的作用。
期刊介绍:
The EMBO Journal has stood as EMBO's flagship publication since its inception in 1982. Renowned for its international reputation in quality and originality, the journal spans all facets of molecular biology. It serves as a platform for papers elucidating original research of broad general interest in molecular and cell biology, with a distinct focus on molecular mechanisms and physiological relevance.
With a commitment to promoting articles reporting novel findings of broad biological significance, The EMBO Journal stands as a key contributor to advancing the field of molecular biology.