Many-Body Entropies and Entanglement from Polynomially Many Local Measurements

IF 11.6 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Physical Review X Pub Date : 2024-08-26 DOI:10.1103/physrevx.14.031035
Benoît Vermersch, Marko Ljubotina, J. Ignacio Cirac, Peter Zoller, Maksym Serbyn, Lorenzo Piroli
{"title":"Many-Body Entropies and Entanglement from Polynomially Many Local Measurements","authors":"Benoît Vermersch, Marko Ljubotina, J. Ignacio Cirac, Peter Zoller, Maksym Serbyn, Lorenzo Piroli","doi":"10.1103/physrevx.14.031035","DOIUrl":null,"url":null,"abstract":"Estimating global properties of many-body quantum systems such as entropy or bipartite entanglement is a notoriously difficult task, typically requiring a number of measurements or classical postprocessing resources growing exponentially in the system size. In this work, we address the problem of estimating global entropies and mixed-state entanglement via partial-transposed (PT) moments and show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite. Focusing on one-dimensional systems, we identify a set of approximate factorization conditions (AFCs) on the system density matrix, which allow us to reconstruct entropies and PT moments from information on local subsystems. This identification yields a simple and efficient strategy for entropy and entanglement estimation. Our method could be implemented in different ways, depending on how information on local subsystems is extracted. Focusing on randomized measurements providing a practical and common measurement scheme, we prove that our protocol requires only polynomially many measurements and postprocessing operations, assuming that the state to be measured satisfies the AFCs. We prove that the AFCs hold for finite-depth quantum-circuit states and translation-invariant matrix-product density operators and provide numerical evidence that they are satisfied in more general, physically interesting cases, including thermal states of local Hamiltonians. We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s quantum platforms.","PeriodicalId":20161,"journal":{"name":"Physical Review X","volume":null,"pages":null},"PeriodicalIF":11.6000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review X","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevx.14.031035","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Estimating global properties of many-body quantum systems such as entropy or bipartite entanglement is a notoriously difficult task, typically requiring a number of measurements or classical postprocessing resources growing exponentially in the system size. In this work, we address the problem of estimating global entropies and mixed-state entanglement via partial-transposed (PT) moments and show that efficient estimation strategies exist under the assumption that all the spatial correlation lengths are finite. Focusing on one-dimensional systems, we identify a set of approximate factorization conditions (AFCs) on the system density matrix, which allow us to reconstruct entropies and PT moments from information on local subsystems. This identification yields a simple and efficient strategy for entropy and entanglement estimation. Our method could be implemented in different ways, depending on how information on local subsystems is extracted. Focusing on randomized measurements providing a practical and common measurement scheme, we prove that our protocol requires only polynomially many measurements and postprocessing operations, assuming that the state to be measured satisfies the AFCs. We prove that the AFCs hold for finite-depth quantum-circuit states and translation-invariant matrix-product density operators and provide numerical evidence that they are satisfied in more general, physically interesting cases, including thermal states of local Hamiltonians. We argue that our method could be practically useful to detect bipartite mixed-state entanglement for large numbers of qubits available in today’s quantum platforms.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多项式多局部测量的多体熵和纠缠
估算多体量子系统的全局属性(如熵或双态纠缠)是一项众所周知的艰巨任务,通常需要大量测量或经典后处理资源,这些资源随系统规模呈指数增长。在这项工作中,我们解决了通过部分反演(PT)矩估计全局熵和混合态纠缠的问题,并证明在所有空间相关长度都是有限的假设条件下,存在高效的估计策略。我们以一维系统为重点,确定了系统密度矩阵上的一组近似因式分解条件(AFC),从而可以根据局部子系统的信息重建熵和 PT 矩。这种识别方法产生了一种简单高效的熵和纠缠估计策略。我们的方法可以以不同的方式实施,这取决于如何提取局部子系统的信息。我们将重点放在提供实用和常见测量方案的随机测量上,证明我们的协议只需要多项式数量的测量和后处理操作,前提是要测量的状态满足 AFCs。我们证明了 AFCs 在有限深度量子电路状态和平移不变矩阵-乘积密度算子中成立,并提供了数值证据,证明它们在更普遍、物理上更有趣的情况下也能满足要求,包括局部哈密顿的热状态。我们认为,我们的方法对于检测当今量子平台上大量量子比特的双向混合状态纠缠是非常有用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Review X
Physical Review X PHYSICS, MULTIDISCIPLINARY-
CiteScore
24.60
自引率
1.60%
发文量
197
审稿时长
3 months
期刊介绍: Physical Review X (PRX) stands as an exclusively online, fully open-access journal, emphasizing innovation, quality, and enduring impact in the scientific content it disseminates. Devoted to showcasing a curated selection of papers from pure, applied, and interdisciplinary physics, PRX aims to feature work with the potential to shape current and future research while leaving a lasting and profound impact in their respective fields. Encompassing the entire spectrum of physics subject areas, PRX places a special focus on groundbreaking interdisciplinary research with broad-reaching influence.
期刊最新文献
Impact of Nuclear Motion on Light-Induced Bimolecular Interaction Dynamics Quantum Entanglement between Optical and Microwave Photonic Qubits Geometric Landscape Annealing as an Optimization Principle Underlying the Coherent Ising Machine Theory of Stimulated Brillouin Scattering in Fibers for Highly Multimode Excitations Theoretical Description of Pump-Probe Experiments in Charge-Density-Wave Materials out to Long Times
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1