Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma.

Kareem A Wahid, Renjie He, Cem Dede, Abdallah S R Mohamed, Moamen Abobakr Abdelaal, Lisanne V van Dijk, Clifton D Fuller, Mohamed A Naser
{"title":"Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma.","authors":"Kareem A Wahid, Renjie He, Cem Dede, Abdallah S R Mohamed, Moamen Abobakr Abdelaal, Lisanne V van Dijk, Clifton D Fuller, Mohamed A Naser","doi":"10.1007/978-3-030-98253-9_28","DOIUrl":null,"url":null,"abstract":"<p><p>PET/CT images provide a rich data source for clinical prediction models in head and neck squamous cell carcinoma (HNSCC). Deep learning models often use images in an end-to-end fashion with clinical data or no additional input for predictions. However, in the context of HNSCC, the tumor region of interest may be an informative prior in the generation of improved prediction performance. In this study, we utilize a deep learning framework based on a DenseNet architecture to combine PET images, CT images, primary tumor segmentation masks, and clinical data as separate channels to predict progression-free survival (PFS) in days for HNSCC patients. Through internal validation (10-fold cross-validation) based on a large set of training data provided by the 2021 HECKTOR Challenge, we achieve a mean C-index of 0.855 ± 0.060 and 0.650 ± 0.074 when observed events are and are not included in the C-index calculation, respectively. Ensemble approaches applied to cross-validation folds yield C-index values up to 0.698 in the independent test set (external validation), leading to a 1<sup>st</sup> place ranking on the competition leaderboard. Importantly, the value of the added segmentation mask is underscored in both internal and external validation by an improvement of the C-index when compared to models that do not utilize the segmentation mask. These promising results highlight the utility of including segmentation masks as additional input channels in deep learning pipelines for clinical outcome prediction in HNSCC.</p>","PeriodicalId":93561,"journal":{"name":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","volume":"13209 ","pages":"300-307"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991448/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-98253-9_28","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

PET/CT images provide a rich data source for clinical prediction models in head and neck squamous cell carcinoma (HNSCC). Deep learning models often use images in an end-to-end fashion with clinical data or no additional input for predictions. However, in the context of HNSCC, the tumor region of interest may be an informative prior in the generation of improved prediction performance. In this study, we utilize a deep learning framework based on a DenseNet architecture to combine PET images, CT images, primary tumor segmentation masks, and clinical data as separate channels to predict progression-free survival (PFS) in days for HNSCC patients. Through internal validation (10-fold cross-validation) based on a large set of training data provided by the 2021 HECKTOR Challenge, we achieve a mean C-index of 0.855 ± 0.060 and 0.650 ± 0.074 when observed events are and are not included in the C-index calculation, respectively. Ensemble approaches applied to cross-validation folds yield C-index values up to 0.698 in the independent test set (external validation), leading to a 1st place ranking on the competition leaderboard. Importantly, the value of the added segmentation mask is underscored in both internal and external validation by an improvement of the C-index when compared to models that do not utilize the segmentation mask. These promising results highlight the utility of including segmentation masks as additional input channels in deep learning pipelines for clinical outcome prediction in HNSCC.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在深度学习框架中将肿瘤分割掩膜与 PET/CT 图像和临床数据相结合,改进头颈部鳞状细胞癌的预后预测。
PET/CT 图像为头颈部鳞状细胞癌(HNSCC)的临床预测模型提供了丰富的数据源。深度学习模型通常以端到端的方式使用图像,同时使用临床数据或不使用额外输入进行预测。然而,在 HNSCC 的背景下,肿瘤感兴趣区可能是提高预测性能的先验信息。在本研究中,我们利用基于 DenseNet 架构的深度学习框架,将 PET 图像、CT 图像、原发肿瘤分割掩膜和临床数据作为独立通道结合起来,预测 HNSCC 患者的无进展生存期(PFS)。通过基于 2021 年 HECKTOR 挑战赛提供的大量训练数据集的内部验证(10 倍交叉验证),当观察到的事件被纳入或未被纳入 C 指数计算时,我们的平均 C 指数分别为 0.855 ± 0.060 和 0.650 ± 0.074。应用于交叉验证折叠的集合方法在独立测试集(外部验证)中产生的 C 指数值高达 0.698,从而在竞赛排行榜上名列第一。重要的是,在内部和外部验证中,与未使用分段掩码的模型相比,增加的分段掩码提高了 C 指数,从而凸显了增加的分段掩码的价值。这些令人鼓舞的结果凸显了在深度学习管道中将分段掩码作为额外输入通道用于 HNSCC 临床结果预测的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head and Neck Tumor Segmentation and Outcome Prediction: Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings Head and Neck Tumor Segmentation and Outcome Prediction: Second Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma. Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images. Head and Neck Cancer Primary Tumor Auto Segmentation using Model Ensembling of Deep Learning in PET-CT Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1