Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images.

Mohamed A Naser, Kareem A Wahid, Lisanne V van Dijk, Renjie He, Moamen Abobakr Abdelaal, Cem Dede, Abdallah S R Mohamed, Clifton D Fuller
{"title":"Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images.","authors":"Mohamed A Naser, Kareem A Wahid, Lisanne V van Dijk, Renjie He, Moamen Abobakr Abdelaal, Cem Dede, Abdallah S R Mohamed, Clifton D Fuller","doi":"10.1007/978-3-030-98253-9_11","DOIUrl":null,"url":null,"abstract":"<p><p>Auto-segmentation of primary tumors in oropharyngeal cancer using PET/CT images is an unmet need that has the potential to improve radiation oncology workflows. In this study, we develop a series of deep learning models based on a 3D Residual Unet (ResUnet) architecture that can segment oropharyngeal tumors with high performance as demonstrated through internal and external validation of large-scale datasets (training size = 224 patients, testing size = 101 patients) as part of the 2021 HECKTOR Challenge. Specifically, we leverage ResUNet models with either 256 or 512 bottleneck layer channels that demonstrate internal validation (10-fold cross-validation) mean Dice similarity coefficient (DSC) up to 0.771 and median 95% Hausdorff distance (95% HD) as low as 2.919 mm. We employ label fusion ensemble approaches, including Simultaneous Truth and Performance Level Estimation (STAPLE) and a voxel-level threshold approach based on majority voting (AVERAGE), to generate consensus segmentations on the test data by combining the segmentations produced through different trained cross-validation models. We demonstrate that our best performing ensembling approach (256 channels AVERAGE) achieves a mean DSC of 0.770 and median 95% HD of 3.143 mm through independent external validation on the test set. Our DSC and 95% HD test results are within 0.01 and 0.06 mm of the top ranked model in the competition, respectively. Concordance of internal and external validation results suggests our models are robust and can generalize well to unseen PET/CT data. We advocate that ResUNet models coupled to label fusion ensembling approaches are promising candidates for PET/CT oropharyngeal primary tumors auto-segmentation. Future investigations should target the ideal combination of channel combinations and label fusion strategies to maximize segmentation performance.</p>","PeriodicalId":93561,"journal":{"name":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","volume":"13209 ","pages":"121-132"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8991449/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Head and neck tumor segmentation and outcome prediction : second challenge, HECKTOR 2021, held in conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings. Head and Neck Tumor Segmentation Challenge (2nd : 2021 ...","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-98253-9_11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2022/3/13 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Auto-segmentation of primary tumors in oropharyngeal cancer using PET/CT images is an unmet need that has the potential to improve radiation oncology workflows. In this study, we develop a series of deep learning models based on a 3D Residual Unet (ResUnet) architecture that can segment oropharyngeal tumors with high performance as demonstrated through internal and external validation of large-scale datasets (training size = 224 patients, testing size = 101 patients) as part of the 2021 HECKTOR Challenge. Specifically, we leverage ResUNet models with either 256 or 512 bottleneck layer channels that demonstrate internal validation (10-fold cross-validation) mean Dice similarity coefficient (DSC) up to 0.771 and median 95% Hausdorff distance (95% HD) as low as 2.919 mm. We employ label fusion ensemble approaches, including Simultaneous Truth and Performance Level Estimation (STAPLE) and a voxel-level threshold approach based on majority voting (AVERAGE), to generate consensus segmentations on the test data by combining the segmentations produced through different trained cross-validation models. We demonstrate that our best performing ensembling approach (256 channels AVERAGE) achieves a mean DSC of 0.770 and median 95% HD of 3.143 mm through independent external validation on the test set. Our DSC and 95% HD test results are within 0.01 and 0.06 mm of the top ranked model in the competition, respectively. Concordance of internal and external validation results suggests our models are robust and can generalize well to unseen PET/CT data. We advocate that ResUNet models coupled to label fusion ensembling approaches are promising candidates for PET/CT oropharyngeal primary tumors auto-segmentation. Future investigations should target the ideal combination of channel combinations and label fusion strategies to maximize segmentation performance.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习模型在 PET/CT 图像中进行头颈癌原发肿瘤自动分割
利用 PET/CT 图像对口咽癌原发肿瘤进行自动分割是一项尚未满足的需求,有可能改善放射肿瘤学的工作流程。在本研究中,我们开发了一系列基于三维残留 Unet(ResUnet)架构的深度学习模型,通过对大规模数据集(训练规模 = 224 名患者,测试规模 = 101 名患者)的内部和外部验证,这些模型可以对口咽肿瘤进行高性能分割,这也是 2021 年 HECKTOR 挑战赛的一部分。具体来说,我们利用具有 256 或 512 个瓶颈层通道的 ResUNet 模型,这些模型在内部验证(10 倍交叉验证)中的平均 Dice 相似性系数 (DSC) 高达 0.771,95% Hausdorff 距离 (95% HD) 中值低至 2.919 mm。我们采用标签融合集合方法,包括同步真相和性能水平估计(STAPLE)和基于多数投票的体素级阈值方法(AVERAGE),通过结合不同训练有素的交叉验证模型产生的分割结果,在测试数据上生成共识分割结果。通过对测试集进行独立的外部验证,我们证明了性能最好的集合方法(256 通道平均值)的平均 DSC 值为 0.770,中位 95% HD 值为 3.143 mm。我们的 DSC 和 95% HD 测试结果分别与竞赛中排名第一的模型相差 0.01 毫米和 0.06 毫米。内部和外部验证结果的一致性表明,我们的模型是稳健的,可以很好地推广到未见过的 PET/CT 数据中。我们认为,ResUNet 模型与标签融合集合方法相结合,是 PET/CT 口咽原发肿瘤自动分割的理想候选方法。未来的研究应以通道组合和标签融合策略的理想组合为目标,以最大限度地提高分割性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Head and Neck Tumor Segmentation and Outcome Prediction: Third Challenge, HECKTOR 2022, Held in Conjunction with MICCAI 2022, Singapore, September 22, 2022, Proceedings Head and Neck Tumor Segmentation and Outcome Prediction: Second Challenge, HECKTOR 2021, Held in Conjunction with MICCAI 2021, Strasbourg, France, September 27, 2021, Proceedings Combining Tumor Segmentation Masks with PET/CT Images and Clinical Data in a Deep Learning Framework for Improved Prognostic Prediction in Head and Neck Squamous Cell Carcinoma. Head and Neck Cancer Primary Tumor Auto Segmentation Using Model Ensembling of Deep Learning in PET/CT Images. Head and Neck Cancer Primary Tumor Auto Segmentation using Model Ensembling of Deep Learning in PET-CT Images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1