Maroof Ahmad Khan , Mubashar Ilyas , Shehwas Kalsoom , Muhammad Abbas , Hafiz Muhammad Zohaib , Mudassar Ilyas , Faryal Nazar Balouch , Mohsin Rasheed , Javed Iqbal
{"title":"In-silico optimization of resveratrol interaction with nano-borophene: A DFT-guided study of supramolecular artistry","authors":"Maroof Ahmad Khan , Mubashar Ilyas , Shehwas Kalsoom , Muhammad Abbas , Hafiz Muhammad Zohaib , Mudassar Ilyas , Faryal Nazar Balouch , Mohsin Rasheed , Javed Iqbal","doi":"10.1016/j.compbiolchem.2024.108179","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, the potential of borophene (BOR) as a drug delivery system for resveratrol (RVT) was explored to evaluate its efficacy in cancer treatment. The excited, electronic, and geometric states of RVT, BOR, and the borophene-adsorbed resveratrol complex (BOR@RVT) were calculated to assess BOR's suitability as a drug carrier. Noncovalent interaction (NCI) plots indicated a weak force of attraction between BOR and RVT, which facilitates the offloading of RVT at the target site. Frontier molecular orbital (FMO) analysis showed that during electron excitation from Highest Occupied Molecular Orbital (HOMO) to Lowest Unoccupied Molecular Orbital (LUMO), charge transfer occurs from RVT to BOR. This was further confirmed by charge decomposition analysis (CDA). Calculations for the excited state of BOR@RVT revealed a red shift in the maximum absorption wavelength (λmax), indicating a photoinduced electron transfer (PET) process across various excited states. PET analysis demonstrated fluorescence quenching due to this interaction. Our findings suggest that BOR holds significant potential as a drug delivery vehicle for cancer treatment, offering a promising platform for the development of advanced drug delivery systems.</p></div>","PeriodicalId":10616,"journal":{"name":"Computational Biology and Chemistry","volume":"112 ","pages":"Article 108179"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Biology and Chemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476927124001671","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, the potential of borophene (BOR) as a drug delivery system for resveratrol (RVT) was explored to evaluate its efficacy in cancer treatment. The excited, electronic, and geometric states of RVT, BOR, and the borophene-adsorbed resveratrol complex (BOR@RVT) were calculated to assess BOR's suitability as a drug carrier. Noncovalent interaction (NCI) plots indicated a weak force of attraction between BOR and RVT, which facilitates the offloading of RVT at the target site. Frontier molecular orbital (FMO) analysis showed that during electron excitation from Highest Occupied Molecular Orbital (HOMO) to Lowest Unoccupied Molecular Orbital (LUMO), charge transfer occurs from RVT to BOR. This was further confirmed by charge decomposition analysis (CDA). Calculations for the excited state of BOR@RVT revealed a red shift in the maximum absorption wavelength (λmax), indicating a photoinduced electron transfer (PET) process across various excited states. PET analysis demonstrated fluorescence quenching due to this interaction. Our findings suggest that BOR holds significant potential as a drug delivery vehicle for cancer treatment, offering a promising platform for the development of advanced drug delivery systems.
期刊介绍:
Computational Biology and Chemistry publishes original research papers and review articles in all areas of computational life sciences. High quality research contributions with a major computational component in the areas of nucleic acid and protein sequence research, molecular evolution, molecular genetics (functional genomics and proteomics), theory and practice of either biology-specific or chemical-biology-specific modeling, and structural biology of nucleic acids and proteins are particularly welcome. Exceptionally high quality research work in bioinformatics, systems biology, ecology, computational pharmacology, metabolism, biomedical engineering, epidemiology, and statistical genetics will also be considered.
Given their inherent uncertainty, protein modeling and molecular docking studies should be thoroughly validated. In the absence of experimental results for validation, the use of molecular dynamics simulations along with detailed free energy calculations, for example, should be used as complementary techniques to support the major conclusions. Submissions of premature modeling exercises without additional biological insights will not be considered.
Review articles will generally be commissioned by the editors and should not be submitted to the journal without explicit invitation. However prospective authors are welcome to send a brief (one to three pages) synopsis, which will be evaluated by the editors.