Catalytic decomposition of NH3 as a by-product of magnetically confined nuclear fusion

IF 1.9 3区 工程技术 Q1 NUCLEAR SCIENCE & TECHNOLOGY Fusion Engineering and Design Pub Date : 2024-08-28 DOI:10.1016/j.fusengdes.2024.114642
{"title":"Catalytic decomposition of NH3 as a by-product of magnetically confined nuclear fusion","authors":"","doi":"10.1016/j.fusengdes.2024.114642","DOIUrl":null,"url":null,"abstract":"<div><p>A statistical design of experiments was conducted to optimize a trimetallic catalyst formulation consisting of ruthenium, yttrium, and potassium on γ-Al<sub>2</sub>O<sub>3</sub> (RuYK/ γ-Al<sub>2</sub>O<sub>3</sub>) for use as ammonia (NH<sub>3</sub>) decomposition catalyst in the hydrogen isotope impurity processing for magnetically confined nuclear fusion systems. Optimal weight loadings of 6.9 wt-% Ru, 4.3 wt-% Y, and 12 wt-% K were determined through the design of experiments. The thermal stability of the catalyst was investigated through thermal cycling of the catalyst over 30 cycles. The optimized catalyst remained stable over the cycles under reducing conditions. As oxygen, carbon dioxide and water are the primary impurities in the Tokamak exhaust, the chemical stability of the catalyst was determined against these impurities. While these impurities initially decreased the NH<sub>3</sub> decomposition activity, the initial activity was attained once the impurity was removed from the stream.</p></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624004939","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

A statistical design of experiments was conducted to optimize a trimetallic catalyst formulation consisting of ruthenium, yttrium, and potassium on γ-Al2O3 (RuYK/ γ-Al2O3) for use as ammonia (NH3) decomposition catalyst in the hydrogen isotope impurity processing for magnetically confined nuclear fusion systems. Optimal weight loadings of 6.9 wt-% Ru, 4.3 wt-% Y, and 12 wt-% K were determined through the design of experiments. The thermal stability of the catalyst was investigated through thermal cycling of the catalyst over 30 cycles. The optimized catalyst remained stable over the cycles under reducing conditions. As oxygen, carbon dioxide and water are the primary impurities in the Tokamak exhaust, the chemical stability of the catalyst was determined against these impurities. While these impurities initially decreased the NH3 decomposition activity, the initial activity was attained once the impurity was removed from the stream.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
催化分解 NH3 作为磁约束核聚变的副产品
为了优化γ-Al2O3(RuYK/ γ-Al2O3)上由钌、钇和钾组成的三金属催化剂配方,以便在磁约束核聚变系统的氢同位素杂质处理中用作氨(NH3)分解催化剂,我们进行了统计实验设计。通过实验设计确定了 6.9 wt-% Ru、4.3 wt-% Y 和 12 wt-% K 的最佳负载量。通过对催化剂进行 30 次热循环,研究了催化剂的热稳定性。在还原条件下,优化后的催化剂在循环过程中保持稳定。由于氧气、二氧化碳和水是托卡马克废气中的主要杂质,因此还测定了催化剂对这些杂质的化学稳定性。虽然这些杂质最初降低了 NH3 的分解活性,但一旦杂质从气流中去除,就能达到最初的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Fusion Engineering and Design
Fusion Engineering and Design 工程技术-核科学技术
CiteScore
3.50
自引率
23.50%
发文量
275
审稿时长
3.8 months
期刊介绍: The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.
期刊最新文献
On the fabrication of ultrafine-grained potassium-doped tungsten: Mechanical milling and spark plasma sintering of K-doped W powder prepared by evaporation-condensation method X-ray imaging crystal spectrometer (XICS) diagnostic on the HL-3 tokamak The energy output equilibrium scheme with intermediate energy storage for tokamak fusion power plant Measurement of the mechanical vibration and its impact on the magnetic diagnostics in the J-TEXT tokamak Overview of the TCV digital real-time plasma control system and its applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1