{"title":"Study and analysis of the design considerations for controlling vertical plasma position in ADITYA-U tokamak","authors":"Rohit Kumar , Harshita Raj , Vinay Menon , Deepti Sharma , Darshan Parmar , Dinesh Sharma , Vishal Jain , YSS Srinivas , Shivam Gupta , Rakesh Tanna , Ashok Mankani , Joydeep Ghosh","doi":"10.1016/j.fusengdes.2024.114736","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents design considerations of a new power supply and a new coil system for the vertical plasma position control in ADITYA-U tokamak. The main objective is to improve overall plasma performance compared to the existing open-loop system. Feedback stabilization of the plasma vertical position in ADITYA-U tokamak will play a vital role. Vertical Displacement Events (VDE) can be triggered during shaped plasma operation and requires proper control to avoid plasma disruptions. A radial magnetic field created by exterior coils will arrest the vertical plasma position against unwanted VDEs. Therefore, procurement of a new power supply namely, active position magnet control power supply (APMC-PS) is proposed to fulfill the vertical position control requirement in the ADITYA-U tokamak. This work presents the overall requirement for an active control system to improve the vertical control capability in the mid-size machine without passive stabilisers. The proposed scheme will support a reduction in time response with relatively less apparent power for controlling the vertical plasma position.</div></div>","PeriodicalId":55133,"journal":{"name":"Fusion Engineering and Design","volume":"210 ","pages":"Article 114736"},"PeriodicalIF":1.9000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fusion Engineering and Design","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920379624005878","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NUCLEAR SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents design considerations of a new power supply and a new coil system for the vertical plasma position control in ADITYA-U tokamak. The main objective is to improve overall plasma performance compared to the existing open-loop system. Feedback stabilization of the plasma vertical position in ADITYA-U tokamak will play a vital role. Vertical Displacement Events (VDE) can be triggered during shaped plasma operation and requires proper control to avoid plasma disruptions. A radial magnetic field created by exterior coils will arrest the vertical plasma position against unwanted VDEs. Therefore, procurement of a new power supply namely, active position magnet control power supply (APMC-PS) is proposed to fulfill the vertical position control requirement in the ADITYA-U tokamak. This work presents the overall requirement for an active control system to improve the vertical control capability in the mid-size machine without passive stabilisers. The proposed scheme will support a reduction in time response with relatively less apparent power for controlling the vertical plasma position.
期刊介绍:
The journal accepts papers about experiments (both plasma and technology), theory, models, methods, and designs in areas relating to technology, engineering, and applied science aspects of magnetic and inertial fusion energy. Specific areas of interest include: MFE and IFE design studies for experiments and reactors; fusion nuclear technologies and materials, including blankets and shields; analysis of reactor plasmas; plasma heating, fuelling, and vacuum systems; drivers, targets, and special technologies for IFE, controls and diagnostics; fuel cycle analysis and tritium reprocessing and handling; operations and remote maintenance of reactors; safety, decommissioning, and waste management; economic and environmental analysis of components and systems.