Fan Ji , Tongzheng Xin , Yuhong Zhao , Wenkui Yang , Guoning Bai , Song Tang , Enyu Guo , Mengran Zhou , Qingyu Shi , Luqing Cui , Long-Qing Chen , Binbin He
{"title":"Enhancing plasticity in BCC Mg-Li-Al alloys through controlled precipitation at grain boundaries","authors":"Fan Ji , Tongzheng Xin , Yuhong Zhao , Wenkui Yang , Guoning Bai , Song Tang , Enyu Guo , Mengran Zhou , Qingyu Shi , Luqing Cui , Long-Qing Chen , Binbin He","doi":"10.1016/j.ijplas.2024.104105","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the improvement of plasticity in body-centered cubic magnesium (Mg)-lithium (Li)-aluminum (Al) alloys, crucial for lightweight structural applications. The ternary Mg-Li-Al alloys exhibits high strength but low ductility. Precipitates at grain boundaries in these alloys, linked to reduced plasticity, are examined for their crystal structure and composition. Advanced microscopic techniques reveal the transformation of precipitates and the development of specific structures at grain boundaries. Thermodynamics of element diffusion at grain boundaries are explored through first-principles calculations, and a phase-field simulation models precipitate evolution. Molecular dynamics simulations elucidate nanoscale mechanisms governing the transition from brittle to ductile fracture modes during artificial aging. The D0<sub>3−</sub>Mg<sub>3</sub>Al at grain boundaries is a brittle phase, and through a 170 °C aging treatment, it induces the precipitation of lamellar α-Mg phase with D0<sub>3−</sub>Mg<sub>3</sub>Al as nucleation sites. The occupancy energy of Al atoms at Li sites in α-Mg is found to be lower than that in D0<sub>3−</sub>Mg<sub>3</sub>Al, leading to the dissolution of D0<sub>3−</sub>Mg<sub>3</sub>Al. The α-Mg, characterized by a stronger metallic nature, exhibits a better-matched modulus with the matrix and enhanced dislocation mobility. The precipitation of α-Mg plays a pivotal role in significantly improving the ductility of the alloy. This work contributes to the understanding of the complex interplay between alloy composition, grain boundary precipitates, and plasticity, as well as brings insights to guide interfacial control in the development of advanced Mg-Li-Al alloys for structural applications.</p></div>","PeriodicalId":340,"journal":{"name":"International Journal of Plasticity","volume":"181 ","pages":"Article 104105"},"PeriodicalIF":9.4000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plasticity","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0749641924002328","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the improvement of plasticity in body-centered cubic magnesium (Mg)-lithium (Li)-aluminum (Al) alloys, crucial for lightweight structural applications. The ternary Mg-Li-Al alloys exhibits high strength but low ductility. Precipitates at grain boundaries in these alloys, linked to reduced plasticity, are examined for their crystal structure and composition. Advanced microscopic techniques reveal the transformation of precipitates and the development of specific structures at grain boundaries. Thermodynamics of element diffusion at grain boundaries are explored through first-principles calculations, and a phase-field simulation models precipitate evolution. Molecular dynamics simulations elucidate nanoscale mechanisms governing the transition from brittle to ductile fracture modes during artificial aging. The D03−Mg3Al at grain boundaries is a brittle phase, and through a 170 °C aging treatment, it induces the precipitation of lamellar α-Mg phase with D03−Mg3Al as nucleation sites. The occupancy energy of Al atoms at Li sites in α-Mg is found to be lower than that in D03−Mg3Al, leading to the dissolution of D03−Mg3Al. The α-Mg, characterized by a stronger metallic nature, exhibits a better-matched modulus with the matrix and enhanced dislocation mobility. The precipitation of α-Mg plays a pivotal role in significantly improving the ductility of the alloy. This work contributes to the understanding of the complex interplay between alloy composition, grain boundary precipitates, and plasticity, as well as brings insights to guide interfacial control in the development of advanced Mg-Li-Al alloys for structural applications.
期刊介绍:
International Journal of Plasticity aims to present original research encompassing all facets of plastic deformation, damage, and fracture behavior in both isotropic and anisotropic solids. This includes exploring the thermodynamics of plasticity and fracture, continuum theory, and macroscopic as well as microscopic phenomena.
Topics of interest span the plastic behavior of single crystals and polycrystalline metals, ceramics, rocks, soils, composites, nanocrystalline and microelectronics materials, shape memory alloys, ferroelectric ceramics, thin films, and polymers. Additionally, the journal covers plasticity aspects of failure and fracture mechanics. Contributions involving significant experimental, numerical, or theoretical advancements that enhance the understanding of the plastic behavior of solids are particularly valued. Papers addressing the modeling of finite nonlinear elastic deformation, bearing similarities to the modeling of plastic deformation, are also welcomed.